Relating Test Purposes to Formal Specifications:

Towards a Theoretical Foundation of Practical Testing

Jens Grabowski, Dieter Hogrefe
Robert Nahm, Andreas Spichiger

IAM-93-014

June 1993

Abstract!

The problems of current theoretical foundations of testing are its constraint to Finite
State Machines (FSMs) and its inability to be related to real black box testing. In
this paper we give a theoretical foundation of practical testing. This foundation
also implies a test methodology. A test generation tool which is based on this
methodology will be presented at the end.

CR Categories and Subject Descriptors: C.2.0 [Computer-Communication Net-
works|: General; C.2.2 [Computer-Communication Networks]: Network Pro-
tocols; D.2.5 [Software Engineering:] Testing and Debugging

General Terms: Verification, Theory, Standardization

Additional Key Words: Test Generation

!This work is performed within the F & E project, no. 233, 'Conformance Testing — A Tool
for the Generation of Test Cases’, funded by Swiss PTT.

1 Introduction

In the project 'Conformance Testing — A Tool for the Generation of Test Cases’
we are looking for methods to generate test cases for conformance tests. This part
of the paper is the result of an analysis of the current theoretical approaches to
testing, the approach taken in ’Conformance Testing Methodology and Framework’
[ISO92a] and the testing methods applied in industry.

1.1 Drawbacks of current theoretical test methods

Quite a number of test methods (some are discussed in [Hol91]) have been intro-
duced in the last twenty years. In general they have the aim to prove behavioural
equivalence of an Implementation Under Test (IUT) and its specification. In con-
formance testing only black box testing is considered. Current methods make a lot
of assumptions on the IUT and its specification. Some of these are:

e The IUT should behave like a deterministic and complete? Finite State Ma-
chine (FSM).

o The F'SM represented by the IUT has to be strongly connected?.

e The maximum number of states of the FSM has to be known and finite.

e The IUT has a known and finite alphabet of input signals.

o The IUT responds to inputs in a known finite time.
These assumptions on the [UT contradict the supposition of black box testing since
they make statements concerning the internal structure of the IUT (e.g. number of
states). Since a restricted IUT can not be behavioural equivalent to a more powerful

specification, it is obvious that the restrictions must hold for the specification too.
The implications of this are described in the following.

1.2 Reality and its model

A specification describes the allowed behaviour of a system. The behaviour can be
regarded under the following aspects:

. flow of control of processes,

. flow of signals between processes,

1
2
3. data flow within processes,
4. time and

5

. probability.

Zcomplete means that in each state all signals may be received

3strongly connected means that each state has to be reachable from all other states

If the IUT has to behave like an FSM there are only limited possibilities to describe
the above mentioned aspects:

1. The IUT can not have unrestricted procedure calls and the dynamic process
creation has to be limited.

2. The buffering of signals has to be limited.

3. The range of variables has to be finite.

4. Tt is hard to describe time aspects with FSM.

5. It is not possible to describe probability aspects with FSM.

Todays formal description techniques (FDTs), i.e. SDL, Lotos and Estelle, are able
to describe Turing Machines which are much more powerful than FSMs. It is possible
to describe the control flow of processes, the flow of signals between processes and
the data flow within processes without restrictions. The mentioned FDTs are not
made to describe time and probability and, therefore, they have problems to describe
such aspects.

2 Reasoning about the relation of test purposes
and the formal specification

The goal of practical testing is to check certain properties of systems (which has
been specified using an FDT) and not to prove behavioural equivalence between
the specification and an TUT. The properties to check are defined by so-called test
purposes. A test purpose may also describe issues of control flow, signal flow, data
flow, time and probability. The selection of such test purposes is a intuitive process
and is usually made by a human. Our approach is very much oriented towards this
practical method. The only assumptions that are made on the IUT considered as a
black box are:

e The IUT has to be representable as a Labelled Transition System (LTS).
e The IUT has a known alphabet of input signals.

This reduces the number of assumptions on an IUT very much. Furthermore, they
allow to use a standardized FDT, since LOTOS, Estelle and SDL specifications are
representable as LTS.

The results of our test method are weaker than the results with current theoret-
ical approaches, but the results of our method are in line with practical testing and
[[SO92a]. When an TUT passes a test case (gets a pass verdict) then it has fulfilled
the test purposes and did not show a behaviour contradicting the specification.

For the description of the test purposes MSCs [CCI92, GGR9I3] are used. In
their simplest form they are able to describe the flow of signals very well. When

they are extended with states also test purposes concerning the flow of control can
be described [GR89]. The introduction of parameters and variables in MSCs will
make it possible to describe data flow. For the specification of the IUT SDL [CCISS]
is chosen.

The next section will present the SAMSTAG (Sdl And Msc baSed Test cAse Gen-
eration) method. The SAMSTAG method interprets SDL as LTS and test purposes
are described as FSMs, i.e. an MSC is transformed into an FSM. It is important to
note that the SAMSTAG method is applicable to any test purpose which is repre-
sentable as an FSM and for any system specification which can be represented by

an LTS.

3 The SAMSTAG method

The goal of the SAMSTAG (Sdl And Msc baSed Test cAse Generation) method is
to generate a TTCN test case from an SDL specification and an MSC.

The SDL specification describes the test architecture, i.e. the IUT, the test con-
text and the tester processes. The tester processes, e.g. in the context of [ISO92a]
upper and lower testers, are modelled as processes, which can send and receive every
valid signal at any time. The MSC describes the test purpose, i.e. part of the signal
exchange, which has to be performed in order to get a pass verdict.

The resulting test case can be seen as a tree, where the nodes are input and
output events of the tester. Figure 1 shows the dynamic part of a test case for the
Inres protocol [Hog91], in which it is tested if the Initiator can establish a connection
after a third CR (Connection Request). Every path of the tree, from the root to a leaf
node is associated with a test verdict. We call these paths observables. According
to the three possible test verdicts of a test case we distinguish between pass, fail and
inconclusive observables.

Pass observables. A pass observable is an observable of the SDL system from
which we can conclude, that the the test purpose is fulfilled, i.e. the signal exchange
of the MSC is performed. Additionally, a pass observable leads the system from its
initial state to its initial state, such that the next test case can be applied.

Inconclusive observables. An inconclusive observable is an observable, from
which we cannot conclude, that the test purpose is fulfilled, resp. the signal exchange
of the MSC is performed, although it is a valid observable of the SDL system. Within
the SAMSTAG method we do not require, that an inconclusive observable leads the
SDL system back to the initial state. Therefore, we generate the shortest possible
inconclusive observables.

Fail observables. A fail observable is an observable such that there exists no
corresponding behaviour of the SDL system.

Test Case Dynamic Behaviour

Test Case Name: Test_Case 2

Group : Inres_Protocol/Initiator_Test/Connection_Establishment
Purpose : Connection Establishment after the third retransmission of a Connection Reguest
Default : Unexpected Events
Comments:
Nr. | Label Behaviour Desription Congtraint Ref. | Verdict Comments
1 UT!CONreq
2 LT?MDATIind(CR)
3 LT?MDATInd(CR)
4 LT?MDATInd(CR)
5 LTIMDATreq(CC)
6 UT?ACONconf
7 UT!IDATreq
8 LT?MDATInd(DT)
9 LT?MDATInd(DT)
10 LT?MDATInd(DT)
11 LT?MDATInd(DT)
12 UT?2DISInd PASS
13 LT?MDATInd(CR) INCONC
14 LT?MDATInd(CR) INCONC

Detailed Comments :

Default Dynamic Behaviour

Test Step Name: Unexpected Events

Group : Inres_Protocol/Initiator_Test/Connection_Establishment

Objective: Handle unexpected Signals

Comments :

Nr. | Labe Behaviour Desription Congtraint Ref. | Verdict Comments
1 UT?0THERWISE FAIL
2 LT?0THERWISE FAIL

Detailed Comments :

Figure 1: TTCN test case

Unique Input Output approach

Unfortunately there is no unique relation between a trace (a sequence of events like
inputs, outputs, tasks, ...) of an SDL system and its observable, i.e. two different
traces may have the same observable. One problem of defining test purposes is, that
they may describe an internal signal exchange or that an internal state is reached,
e.g. the initial state at the end of a test case. Such requirements are not directly
observable by the tester.

But they are indirectly testable by means of special observables, which can guar-
antee that every corresponding trace of the SDL system starts and ends in the initial

state and fulfills the test purpose. We call such observables unique pass observables.
In order to minimize the costs of the test campaign we select the shortest unique
pass observables as the pass observable for the test case.

For calculating the unique pass observables we generate first all observables of
the traces of the SDL system, which start and end in the initial state and fulfill
the test purpose. We call them possible pass observables. From the possible pass
observables the unique pass observables are selected.

uT Initiator Medium LT
—— —— L !
UT!ICONreqg
ICONreq
MDATreq(CR) .
MDATInd(CR) LT?MDATind(CR)
MDATreq(CR))
. MDATInd(CR) LT?MDATInd(CR)
I
purpose MDATreq(CR) .
MDATInd(CR) LT?MDATInd(CR)
MDATind(CC) MDATreq(CC) LT!MDATreq(CC)
ICONconf
UT?CONconf
IDATreq MDATreq(DT)
MDATind(DT)
MDATreq(DT) .
MDATInd(DT) LT?MDATind(DT)
postamble
MDATreq(DT))
MDATInd(DT) LT?MDATInd(DT)
MDATreq(DT) .
MDATInd(DT) LT?MDATind(DT)
IDISind
—— —— —— —— LT?MDATInd(DT)

UT?IDISInd

(a) Trace of the test architecture (b) unigue pass observable

Figure 2: Trace of a system and its observable

Figure 2(a) presents a trace by means of an MSC and the corresponding observ-
able by means of a sequence of inputs and outputs. The MSC presents the trace
which has to be performed to get a pass verdict. Normally such a trace consists of
a preamble, a test body, which performs the test purpose and a postamble. In our
example the preamble is empty and the test body can be identified with the test
purpose. The corresponding observable in Figure 2(b) is a unique pass observable.
This means, that every corresponding trace of that observable leads a correct im-
plemented TUT back to the initial state and performs the test purpose. The unique
pass observable can be found in the test case in Figure 1 from line 1 to 12. It is left
to the reader to prove, that the observable, which is obtained by taking a normal
disconnection phase as postamble is not unique.

DL - Frontend MSC - Frontend

SAMSTAG Tool
DL S mulator MSC Smulator
SDL Transformator MSC Transformator
\ \
SDL Interpreter MSC Interpreter

Test case generator

Calculation of possible pass observables
|
Calculation of unique pass observables
|
Calculation of inconclusive observables

\
Generation of TTCN/MP code

TTCN - Backend

Figure 3: The architecture of the SAMSTAG tool

4 The implementation of the SAMSTAG method

Within the previous chapter our approach is presented on a more intuitive level. As
a summary one can say that the approach is based on the calculation of four sets
of observables: possible pass, unique pass, inconclusive and fail observables. In this
chapter we explain how the observables can be calculated and how this is reflected
in a tool architecture.

4.1 The computation of the observables of a test case

The observables of a test case are generated in four steps. In a first step the possible
pass observables of the test case are computed. In a second step we check for each
possible pass observable whether it is a unique pass observable or not. Since we only
need one unique pass observable to ensure the MSC test purpose, we select one of
the shortest. For the chosen unique pass observable the corresponding inconclusive
observables are generated within a third and the fail observables are defined within
a fourth step.

The computation of possible pass observables. The computation of possi-
ble pass observables is a typical search problem. We have to find SDL traces which
include the events specified by the MSC and which lead the SDL system from its ini-
tial state back to its initial state. From such traces the possible pass observables are
extracted. Unfortunately, we cannot ensure that we find possible pass observables,
because this problem is equivalent to the reachability problem of turing machines
[BZ83] which is not decidable.

We search the required observables by simulating the SDL description and the
MSC in parallel. There exist several search methods like depth and breadth search.
Breadth search can not applied because it is impossible to store all possible states
of the SDL system®. Depth search also is not usable since we can not guarantee
termination. As a consequence we use a k-bounded depth search which evaluates all
possible traces of length k. If no trace with required properties is found, the search
can be repeated with a higher bound or stopped without results.

The computation of unique pass observables. For each possible pass observ-
able we have to check if it is a unique pass observable. In this analysis we simulate
all traces with the possible pass observable. If all the simulated traces perform the
test purpose and reach the initial state, then the possible pass observable is unique.
In general there can exist none or a whole set of unique pass observables for an
MSC. For proving a test purpose defined by an MSC we only need one. We choose
one of the shortest unique pass observables to be the unique pass observable of the
generated test case.

The computation of inconclusive observables. For the chosen unique pass 0b-
servable the corresponding inconclusive observables have to be generated. Therefore,
the SDL description is simulated according to the pass observable. The inconclusive
observables are ending in a response of the SUT from which one can conclude that
the required unique pass observable is not performed.

Fail observables. Fuil observables are added by means of the TTCN constructs
OTHERWISE and default behaviour. Therefore, they need not to be calculated.

4.2 The test case generation tool

Figure 3 presents the architecture of a tool which is developed at the University of
Berne and which implements the presented approach. The tool is structured in the
three parts SDL simulator, MSC simulator and test case generator. Both simulators
consist of a transformator and an interpreter. The transformators read descriptions
in phrase representation of SDL (SDL/PR) and MSC (MSC/PR) and transform
them into internal representations. Afterwards the internal representations are sim-
ulated by the interpreters. The test case generator is structured in four modules:

*A state of an SDL system includes the control states of the processes, the contents of the
queues and the values of the variables.

Calculation of possible Pass observables.

Calculation of unique Pass observables.
Calculation of Inconclusive observables.
Generation of the corresponding TTCN/MP? code.

The tool is implemented on Sun workstations. Its inputs are MSC/PR [CCI92] and
SDL/PR [CCI88] descriptions, and its output is a TTCN/MP description [ISO92b].
Front- and backends of the tool are commercial SDL, MSC and TTCN editors.

5 Conclusions

A test generation methodology has been presented which is totally in line with cur-
rent practical testing approaches and [[SO92a]. The implemented tool SAMSTAG
is able to generate a complete test case in TTCN from an SDL specification of the
IUT and an MSC description of the test purpose. The presented method can easily
be adopted to other description techniques and is therefore not restricted to SDL
and MSC at all. For further details we refer the reader to [GHN93] or [NGH93].

References

[BZ83] Daniel Brand and Pitro Zafiropulo. On Communicating Finite State Ma-
chines. Journal of the Association for Computing Machinery, 30(2):323—
342, April 1983.

[CCI88] CCITT SG X. Specification and Description Language. Recommendation
7.100, CCITT, 1988.

[CCI92] CCITT. Message Sequence Charts. Recommendation 7.120, CCITT, May
1992.

[GGRI3] Jens Grabowski, Peter Graubmann, and Ekkart Rudolph. The standard-
isation of Message Sequence Charts. In Software Engineering Standards
Symposium, 1993.

[GHNO93] Jens Grabowski, Dieter Hogrefe, and Robert Nahm. Test Case Generation
with Test Purpose Specification by MSCs. In 6th SDL Forum. North-
Holland, October 1993.

STTCN/MP denotes the machine processable form of TTCN. TTCN/MP has a standardized
ASCII syntax. During test case generation it is not very efficient to use ASCII files as internal
computer representation. As a consequence we have to translate our internal representation into

TTCN/MP.

[GRSY]

[Hog91]

[Hol91]

[1SO92a]

[1SO92b]

[NGHO3]

Jens Grabowski and Ekkart Rudolph. Putting extended sequence charts
into practice. In Ove Faergemand and M.M. Marques, editors, SDL 89
The Language at Work. North-Holland, 1989.

Dieter Hogrefe. OSI Formal Specification Case Study: The INRES Pro-
tocol and Service. Technical Report TAM-91-012, University of Berne,
1991.

Gerard J. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall International, Inc., 1991.

[SO/IEC JTC 1/SC 21 N. Information Technology - Open Systems Inter-
connection - Conformance Testing Methodology and Framework. Interna-

tional Multipart Standard ISO/IEC 9646, ISO, 1992.
[SO/IEC JTC 1/SC21 N. Information Technology - Open Systems In-

terconnection - Conformance Testing Methodology and Framework - Part
3: The Tree and Tabular Combined Notation. International Standard
[SO/IEC 9646-3, 1SO, 1992.

Robert Nahm, Jens Grabowski, and Dieter Hogrefe. Test Case Generation
for Temporal Properties. Technical Report TAM-93-013, University of
Berne, 1993. submitted to FORTE93 Conference.

