
Relating Test Purposes to Formal Speci�cations:Towards a Theoretical Foundation of Practical TestingJens Grabowski, Dieter HogrefeRobert Nahm, Andreas Spichiger
IAM-93-014June 1993



Abstract1The problems of current theoretical foundations of testing are its constraint to FiniteState Machines (FSMs) and its inability to be related to real black box testing. Inthis paper we give a theoretical foundation of practical testing. This foundationalso implies a test methodology. A test generation tool which is based on thismethodology will be presented at the end.
CR Categories and Subject Descriptors: C.2.0 [Computer-CommunicationNet-works]: General; C.2.2 [Computer-Communication Networks]: Network Pro-tocols; D.2.5 [Software Engineering:] Testing and DebuggingGeneral Terms: Veri�cation, Theory, StandardizationAdditional Key Words: Test Generation1This work is performed within the F & E project, no. 233, 'Conformance Testing | A Toolfor the Generation of Test Cases', funded by Swiss PTT.



1 IntroductionIn the project 'Conformance Testing | A Tool for the Generation of Test Cases'we are looking for methods to generate test cases for conformance tests. This partof the paper is the result of an analysis of the current theoretical approaches totesting, the approach taken in 'Conformance Testing Methodology and Framework'[ISO92a] and the testing methods applied in industry.1.1 Drawbacks of current theoretical test methodsQuite a number of test methods (some are discussed in [Hol91]) have been intro-duced in the last twenty years. In general they have the aim to prove behaviouralequivalence of an Implementation Under Test (IUT) and its speci�cation. In con-formance testing only black box testing is considered. Current methods make a lotof assumptions on the IUT and its speci�cation. Some of these are:� The IUT should behave like a deterministic and complete2 Finite State Ma-chine (FSM).� The FSM represented by the IUT has to be strongly connected3.� The maximum number of states of the FSM has to be known and �nite.� The IUT has a known and �nite alphabet of input signals.� The IUT responds to inputs in a known �nite time.These assumptions on the IUT contradict the supposition of black box testing sincethey make statements concerning the internal structure of the IUT (e.g. number ofstates). Since a restricted IUT can not be behavioural equivalent to a more powerfulspeci�cation, it is obvious that the restrictions must hold for the speci�cation too.The implications of this are described in the following.1.2 Reality and its modelA speci�cation describes the allowed behaviour of a system. The behaviour can beregarded under the following aspects:1. 
ow of control of processes,2. 
ow of signals between processes,3. data 
ow within processes,4. time and5. probability.2complete means that in each state all signals may be received3strongly connected means that each state has to be reachable from all other states1



If the IUT has to behave like an FSM there are only limited possibilities to describethe above mentioned aspects:1. The IUT can not have unrestricted procedure calls and the dynamic processcreation has to be limited.2. The bu�ering of signals has to be limited.3. The range of variables has to be �nite.4. It is hard to describe time aspects with FSM.5. It is not possible to describe probability aspects with FSM.Todays formal description techniques (FDTs), i.e. SDL, Lotos and Estelle, are ableto describe Turing Machines which are muchmore powerful than FSMs. It is possibleto describe the control 
ow of processes, the 
ow of signals between processes andthe data 
ow within processes without restrictions. The mentioned FDTs are notmade to describe time and probability and, therefore, they have problems to describesuch aspects.2 Reasoning about the relation of test purposesand the formal speci�cationThe goal of practical testing is to check certain properties of systems (which hasbeen speci�ed using an FDT) and not to prove behavioural equivalence betweenthe speci�cation and an IUT. The properties to check are de�ned by so-called testpurposes. A test purpose may also describe issues of control 
ow, signal 
ow, data
ow, time and probability. The selection of such test purposes is a intuitive processand is usually made by a human. Our approach is very much oriented towards thispractical method. The only assumptions that are made on the IUT considered as ablack box are:� The IUT has to be representable as a Labelled Transition System (LTS).� The IUT has a known alphabet of input signals.This reduces the number of assumptions on an IUT very much. Furthermore, theyallow to use a standardized FDT, since LOTOS, Estelle and SDL speci�cations arerepresentable as LTS.The results of our test method are weaker than the results with current theoret-ical approaches, but the results of our method are in line with practical testing and[ISO92a]. When an IUT passes a test case (gets a pass verdict) then it has ful�lledthe test purposes and did not show a behaviour contradicting the speci�cation.For the description of the test purposes MSCs [CCI92, GGR93] are used. Intheir simplest form they are able to describe the 
ow of signals very well. When2



they are extended with states also test purposes concerning the 
ow of control canbe described [GR89]. The introduction of parameters and variables in MSCs willmake it possible to describe data 
ow. For the speci�cation of the IUT SDL [CCI88]is chosen.The next section will present the SAMSTAG (Sdl And Msc baSed Test cAse Gen-eration) method. The SAMSTAG method interprets SDL as LTS and test purposesare described as FSMs, i.e. an MSC is transformed into an FSM. It is important tonote that the SAMSTAG method is applicable to any test purpose which is repre-sentable as an FSM and for any system speci�cation which can be represented byan LTS.3 The SAMSTAG methodThe goal of the SAMSTAG (Sdl And Msc baSed Test cAse Generation) method isto generate a TTCN test case from an SDL speci�cation and an MSC.The SDL speci�cation describes the test architecture, i.e. the IUT, the test con-text and the tester processes. The tester processes, e.g. in the context of [ISO92a]upper and lower testers, are modelled as processes, which can send and receive everyvalid signal at any time. The MSC describes the test purpose, i.e. part of the signalexchange, which has to be performed in order to get a pass verdict.The resulting test case can be seen as a tree, where the nodes are input andoutput events of the tester. Figure 1 shows the dynamic part of a test case for theInres protocol [Hog91], in which it is tested if the Initiator can establish a connectionafter a third CR (Connection Request). Every path of the tree, from the root to a leafnode is associated with a test verdict. We call these paths observables. Accordingto the three possible test verdicts of a test case we distinguish between pass, fail andinconclusive observables.Pass observables. A pass observable is an observable of the SDL system fromwhich we can conclude, that the the test purpose is ful�lled, i.e. the signal exchangeof the MSC is performed. Additionally, a pass observable leads the system from itsinitial state to its initial state, such that the next test case can be applied.Inconclusive observables. An inconclusive observable is an observable, fromwhich we cannot conclude, that the test purpose is ful�lled, resp. the signal exchangeof the MSC is performed, although it is a valid observable of the SDL system. Withinthe SAMSTAG method we do not require, that an inconclusive observable leads theSDL system back to the initial state. Therefore, we generate the shortest possibleinconclusive observables.Fail observables. A fail observable is an observable such that there exists nocorresponding behaviour of the SDL system.3



Test Case Name :
Group :
Purpose :
Default :
Comments :

Detailed Comments :

1
2
3
4
5

Inres_Protocol/Initiator_Test/Connection_Establishment

6
7
8
9
10
11
12
13
14

LT?MDATind(CR)
LT?MDATind(CR)

LT?MDATind(CR)
LT!MDATreq(CC)

PASS

LT?MDATind(DT)
LT?MDATind(DT)

LT?MDATind(DT)
LT?MDATind(DT)

LT?MDATind(CR) INCONC
LT?MDATind(CR) INCONC

Unexpected Events

Label Behaviour Desription Comments

Test Case Dynamic Behaviour

VerdictNr. Constraint Ref.

Connection Establishment after the third retransmission of a Connection Request

Test_Case_2

UT!ICONreq

UT?ICONconf
UT!IDATreq

UT?IDISind

Detailed Comments :

1
2

Label Behaviour Desription Comments

UT?OTHERWISE
LT?OTHERWISE

FAIL
FAIL

Group :

Default Dynamic Behaviour

Test Step Name : Unexpected Events
Inres_Protocol/Initiator_Test/Connection_Establishment

Objective : Handle unexpected Signals
Comments :

VerdictNr. Constraint Ref.Figure 1: TTCN test caseUnique Input Output approachUnfortunately there is no unique relation between a trace (a sequence of events likeinputs, outputs, tasks, ...) of an SDL system and its observable, i.e. two di�erenttraces may have the same observable. One problem of de�ning test purposes is, thatthey may describe an internal signal exchange or that an internal state is reached,e.g. the initial state at the end of a test case. Such requirements are not directlyobservable by the tester.But they are indirectly testable by means of special observables, which can guar-antee that every corresponding trace of the SDL system starts and ends in the initial4



state and ful�lls the test purpose. We call such observables unique pass observables.In order to minimize the costs of the test campaign we select the shortest uniquepass observables as the pass observable for the test case.For calculating the unique pass observables we generate �rst all observables ofthe traces of the SDL system, which start and end in the initial state and ful�llthe test purpose. We call them possible pass observables. From the possible passobservables the unique pass observables are selected.
IDISind

IDATreq
MDATreq(DT)

MDATind(DT)

MDATreq(DT)
MDATind(DT)

MDATreq(DT)
MDATind(DT)

MDATreq(DT)
MDATind(DT)

ICONreq
MDATreq(CR)

MDATind(CR)

MDATreq(CR)
MDATind(CR)

MDATreq(CR)
MDATind(CR)

MDATreq(CC)
MDATind(CC)

ICONconf
LT!MDATreq(CC)

UT?ICONconf

LT?MDATind(CR)

LT?MDATind(CR)

LT?MDATind(CR)

Initiator MediumUT LT

UT!ICONreq

UT!IDATreq

LT?MDATind(DT)

LT?MDATind(DT)

LT?MDATind(DT)

LT?MDATind(DT)

UT?IDISind

(a) Trace of the test architecture (b) unique pass observable

test purpose

postamble

Figure 2: Trace of a system and its observableFigure 2(a) presents a trace by means of an MSC and the corresponding observ-able by means of a sequence of inputs and outputs. The MSC presents the tracewhich has to be performed to get a pass verdict. Normally such a trace consists ofa preamble, a test body, which performs the test purpose and a postamble. In ourexample the preamble is empty and the test body can be identi�ed with the testpurpose. The corresponding observable in Figure 2(b) is a unique pass observable.This means, that every corresponding trace of that observable leads a correct im-plemented IUT back to the initial state and performs the test purpose. The uniquepass observable can be found in the test case in Figure 1 from line 1 to 12. It is leftto the reader to prove, that the observable, which is obtained by taking a normaldisconnection phase as postamble is not unique.5



Generation of TTCN/MP code

TTCN - Backend

Test case generator

MSC Interpreter SDL Interpreter 

SDL Simulator MSC Simulator

MSC - FrontendSDL - Frontend

SDL Transformator MSC Transformator

Calculation of possible pass observables

Calculation of unique pass observables

Calculation of inconclusive observables

SAMSTAG Tool

Figure 3: The architecture of the SAMSTAG tool4 The implementation of the SAMSTAGmethodWithin the previous chapter our approach is presented on a more intuitive level. Asa summary one can say that the approach is based on the calculation of four setsof observables: possible pass, unique pass, inconclusive and fail observables. In thischapter we explain how the observables can be calculated and how this is re
ectedin a tool architecture.4.1 The computation of the observables of a test caseThe observables of a test case are generated in four steps. In a �rst step the possiblepass observables of the test case are computed. In a second step we check for eachpossible pass observable whether it is a unique pass observable or not. Since we onlyneed one unique pass observable to ensure the MSC test purpose, we select one ofthe shortest. For the chosen unique pass observable the corresponding inconclusiveobservables are generated within a third and the fail observables are de�ned withina fourth step. 6



The computation of possible pass observables. The computation of possi-ble pass observables is a typical search problem. We have to �nd SDL traces whichinclude the events speci�ed by the MSC and which lead the SDL system from its ini-tial state back to its initial state. From such traces the possible pass observables areextracted. Unfortunately, we cannot ensure that we �nd possible pass observables,because this problem is equivalent to the reachability problem of turing machines[BZ83] which is not decidable.We search the required observables by simulating the SDL description and theMSC in parallel. There exist several search methods like depth and breadth search.Breadth search can not applied because it is impossible to store all possible statesof the SDL system4. Depth search also is not usable since we can not guaranteetermination. As a consequence we use a k-bounded depth search which evaluates allpossible traces of length k. If no trace with required properties is found, the searchcan be repeated with a higher bound or stopped without results.The computation of unique pass observables. For each possible pass observ-able we have to check if it is a unique pass observable. In this analysis we simulateall traces with the possible pass observable. If all the simulated traces perform thetest purpose and reach the initial state, then the possible pass observable is unique.In general there can exist none or a whole set of unique pass observables for anMSC. For proving a test purpose de�ned by an MSC we only need one. We chooseone of the shortest unique pass observables to be the unique pass observable of thegenerated test case.The computation of inconclusive observables. For the chosen unique pass ob-servable the corresponding inconclusive observables have to be generated. Therefore,the SDL description is simulated according to the pass observable. The inconclusiveobservables are ending in a response of the SUT from which one can conclude thatthe required unique pass observable is not performed.Fail observables. Fail observables are added by means of the TTCN constructsOTHERWISE and default behaviour. Therefore, they need not to be calculated.4.2 The test case generation toolFigure 3 presents the architecture of a tool which is developed at the University ofBerne and which implements the presented approach. The tool is structured in thethree parts SDL simulator, MSC simulator and test case generator. Both simulatorsconsist of a transformator and an interpreter. The transformators read descriptionsin phrase representation of SDL (SDL/PR) and MSC (MSC/PR) and transformthem into internal representations. Afterwards the internal representations are sim-ulated by the interpreters. The test case generator is structured in four modules:4A state of an SDL system includes the control states of the processes, the contents of thequeues and the values of the variables. 7



� Calculation of possible Pass observables.� Calculation of unique Pass observables.� Calculation of Inconclusive observables.� Generation of the corresponding TTCN/MP5 code.The tool is implemented on Sun workstations. Its inputs are MSC/PR [CCI92] andSDL/PR [CCI88] descriptions, and its output is a TTCN/MP description [ISO92b].Front- and backends of the tool are commercial SDL, MSC and TTCN editors.5 ConclusionsA test generation methodology has been presented which is totally in line with cur-rent practical testing approaches and [ISO92a]. The implemented tool SAMSTAGis able to generate a complete test case in TTCN from an SDL speci�cation of theIUT and an MSC description of the test purpose. The presented method can easilybe adopted to other description techniques and is therefore not restricted to SDLand MSC at all. For further details we refer the reader to [GHN93] or [NGH93].References[BZ83] Daniel Brand and Pitro Za�ropulo. On Communicating Finite State Ma-chines. Journal of the Association for Computing Machinery, 30(2):323{342, April 1983.[CCI88] CCITT SG X. Speci�cation and Description Language. RecommendationZ.100, CCITT, 1988.[CCI92] CCITT. Message Sequence Charts. Recommendation Z.120, CCITT, May1992.[GGR93] Jens Grabowski, Peter Graubmann, and Ekkart Rudolph. The standard-isation of Message Sequence Charts. In Software Engineering StandardsSymposium, 1993.[GHN93] Jens Grabowski, Dieter Hogrefe, and Robert Nahm. Test Case Generationwith Test Purpose Speci�cation by MSCs. In 6th SDL Forum. North-Holland, October 1993.5TTCN/MP denotes the machine processable form of TTCN. TTCN/MP has a standardizedASCII syntax. During test case generation it is not very e�cient to use ASCII �les as internalcomputer representation. As a consequence we have to translate our internal representation intoTTCN/MP. 8



[GR89] Jens Grabowski and Ekkart Rudolph. Putting extended sequence chartsinto practice. In Ove Faergemand and M.M. Marques, editors, SDL '89The Language at Work. North-Holland, 1989.[Hog91] Dieter Hogrefe. OSI Formal Speci�cation Case Study: The INRES Pro-tocol and Service. Technical Report IAM-91-012, University of Berne,1991.[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols.Prentice-Hall International, Inc., 1991.[ISO92a] ISO/IEC JTC 1/SC 21 N. Information Technology - Open Systems Inter-connection - Conformance Testing Methodology and Framework. Interna-tional Multipart Standard ISO/IEC 9646, ISO, 1992.[ISO92b] ISO/IEC JTC 1/SC21 N. Information Technology - Open Systems In-terconnection - Conformance Testing Methodology and Framework - Part3: The Tree and Tabular Combined Notation. International StandardISO/IEC 9646-3, ISO, 1992.[NGH93] Robert Nahm, Jens Grabowski, and Dieter Hogrefe. Test Case Generationfor Temporal Properties. Technical Report IAM-93-013, University ofBerne, 1993. submitted to FORTE'93 Conference.

9


