
Test Case Generation for Temporal PropertiesRobert Nahm Jens Grabowski Dieter HogrefeInstitut f�ur Informatik, Universit�at BernL�anggassstr. 51, CH-3012 Bern
IAM-93-013June 1993

Abstract1The goal of testing is to make statements about the relation between the traces of animplementation and a temporal property. This is not possible for all temporal properties.Within this paper safety and guarantee properties are identi�ed to be testable temporalproperties and for these testable properties a test case de�nition is given. This is doneby representing a safety property as a labeled transition system and by representing theguarantee property as a �nite automaton. The test case de�nition is applied to practi-cal testing by using SDL descriptions to specify safety properties and by using MessageSequence Charts (MSCs) to specify guarantee properties.
CR Categories and Subject Descriptors: C.2.0 [Computer-Communication Net-works]: General; C.2.2 [Computer-Communication Networks]: Network Protocols; D.2.5[Software Engineering]: Testing and Debugging1This work is performed within the F & E project, no. 233, 'Conformance Testing { A Tool for theGeneration of Test Cases', funded by Swiss PTT.

1 IntroductionThe automatic generation of test cases for communication systems (e.g. OSI, ISDN) canbe based on formal speci�cations written in a standardized formal description technique(FDT, i.e. LOTOS, Estelle, or SDL). For test case generation a formal speci�cation canbe simulated and the possible interactions between a system and its environment canbe generated automatically. A communication system may have in�nite traces since ingeneral it should not terminate. Test cases are �nite and therefore, we have to select �niteparts of the potentially in�nite traces. This can be done by de�ning reachability criteria,i.e. the simulation of the speci�cation is aborted, if a reachability criterion is ful�lled. Forthe selected traces test verdicts have to be assigned. One way to do this is to de�ne forevery test verdict an own reachability criterion. In theoretical and practical approaches thede�nition of reachability criteria and the assignment of test verdicts is solved di�erently.Theoretical approaches. Approaches coming from research like UIO [11] or the W-method concentrate on the test case generation for �nite state machines. The reachabilitycriteria are determined by the used conformance relation (e.g. behavioral equivalence),by fault coverage, or by assumptions about the implementation (e.g. the implementationbehaves like a �nite automaton with a certain number of states). The assignment of testverdicts is solved very simple. There is only a PASS and an implicit FAIL verdict, i.e. everysystem behavior which does not get a PASS gets a FAIL. Therefore, only reachabilitycriteria for the PASS verdict have to be de�ned. One problem of the mentioned approachesis that they cannot be applied to systems with in�nite state space. Unfortunately, FDTsforce the description of systems with an in�nite state space. In�nite signal queues of SDLprocesses or unlimited data descriptions are two examples for this. However, there cannot exist test methods which guarantee behavioral equivalence for systems with an in�nitestate space. Even �nite state machines which communicate by means of unbounded FIFObu�ers (i.e. the base model of SDL) are as powerful as Turing Machines [3] for which thebehavioral equivalence is undecidable [12]. As a consequence the behavioral equivalencecan not be used as conformance relation to derive reachability criteria for generating testcases.Practical testing. The goal of practical testing is to show certain properties and notto prove a behavioral equivalence between a speci�cation and an implementation. Theproperties are de�ned by so-called test purposes. Typically, a test purpose is de�ned as asequence of events which have to be performed or a sequence of states which have to bereached. Thus, a test purpose de�nes directly the reachability criterion for the selection ofa test case. In practical testing there exist three test verdicts PASS, FAIL, and INCON-CLUSIVE. PASS is given, if the implementation presents a behavior, which is allowed bythe speci�cation and which ful�lls the test purpose. FAIL is given, if the implementationpresents a behavior, which is not allowed by the speci�cation. INCONCLUSIVE is given,if neither a PASS nor a FAIL can be assigned. The disadvantage of practical testing is, thatit does not state clearly the relation between the speci�cation and the implementation.Our approach. Our approach formalizes practical testing. We concentrate on certaintemporal properties. Especially safety properties which are described by formal speci�-1

cations and guarantee properties which are speci�ed by the test purposes. A guaranteeproperty states that a sequence of events is performed or that a sequence of states isreached. Thus, guarantee properties can be used to estimate a reachability criteria forthe selection of �nite test cases from in�nite traces. As in practical testing our approachalso uses the test verdicts PASS, FAIL and INCONCLUSIVE. PASS is given, if the im-plementation presents a behavior which does not violate the safety property and ful�llsthe guarantee property. FAIL is given, if the implementation violates the safety property.INCONCLUSIVE is given, if the implementation does not violate the safety property, butdoes not ful�ll the guarantee property. One advantage of our approach is, that it is notbounded to �nite state speci�cations. Moreover, the notion of test purposes is formalizedand the assignment of test verdicts can be done automatically.The rest of the paper is organized in the following way. In section 2 we introduce severaltemporal properties and classify them by means of the Borel Hierarchy. Furthermore, weidentify safety and guarantee properties to be testable temporal properties. In section 3the representation of temporal properties by automata is explained. Afterwards (section4) the representation of a test case is introduced and the assignment of test verdicts isdescribed. In section 5 we formalize the test case generation by de�ning a test case fora given safety and a given guarantee property. In the last section (section 6) a researchproject is presented which uses the presented approach in order to generate TTCN testcases automatically from SDL speci�cations and MSCs. The used mathematical notationis explained within the appendix.2 Testable PropertiesSection 2.1 provides a classi�cation of temporal properties. For testing, the classi�cationof temporal properties is of interest2, since di�erent properties may assume a di�erent testprinciples, cause other test verdicts, or are not testable. In section 2.2 testing is explainedas relating the sets of traces of the implementation and the of temporal property, byobserving only one �nite trace of the implementation.2.1 Temporal propertiesA Communication systems has its main interest in maintaining an ongoing interactionwith its environment, rather then terminating. Theoretically, a communication systemcan be viewed as a generator of traces. Let E be the set of events which are executed bythe communication system. We assume a trace to be a sequence of events and de�ne aproperty to be a set of traces. We distinguish between �nitary properties i.e. sets of �nitetraces � � E� and in�nitary properties i.e. sets of in�nite traces � � E!. For simplicitywe regard only in�nitary properties. In the case that the system terminates a trace mayalways be extended by means of an in�nite sequence of dummy events, e.g. clock events.An implementation I is said to have the property �, if all traces of the implementationTr(I) � E! belong to the property �, i.e. Tr(I) � �. If we are satis�ed to restrict ourselvesto expressing only safety properties, then the relatively simple �nitary properties su�ce.2The theory of veri�cation is interested in the classi�cation of temporal properties, since the di�erentproperties are associated with di�erent proof principles, e.g. safety properties are proven by computationalinduction and liveness properties are proven by using a well founded principle.2

The only justi�cation for using in�nitary properties, which are considerable more complexis for expressing liveness properties. In general liveness properties are not testable, sinceone has to observe a complete trace to show, that a liveness property is violated. Therefore,we present a �ner classi�cation of the non-safety properties by the so-called Borel Hierarchy[16]. This classi�cation enables us to distinguish between properties stating, that a certaingood thing3 occurs at least once or occurs in�nitely many times in a trace. We characterizethe di�erent properties of the Borel Hierarchy by the way they are constructed fromlanguages over �nite sequences. In the sequel we construct in�nitary properties from�nitary ones and introduce four basic classes of properties.� A safety property is a property, which states, that a good thing always occurs. Weconstruct a safety property A(�) from a �nitary property �, such that an in�nitetrace belongs to the safety property, i� all its pre�xes are in the �nitary property.A(�) = f� 2 E! j 8w v � : w 2 �g� A guarantee property is a property, which states, that a good thing occurs at leastonce. We construct a guarantee property E(�) from a �nitary property �, such thatan in�nite trace belongs to the guarantee property, i� at least one of its pre�xes isin the �nitary property. E(�) = f� 2 E! j 9w v � : w 2 �g� A recurrence property is a property, which states, that a good thing occurs in�nitelyoften. We construct a recurrence property R(�) from a �nitary property �, suchthat an in�nite trace belongs to the recurrence property, i� in�nitely many pre�xesare in the �nitary property.R(�) = f� 2 E! j 8w 2 �9w0(w v w0 v �) : w0 2 �g� A persistence property is a property, which states, that a good thing occurs contin-uously from a certain point on. We construct a persistence property P(�) from a�nitary property �, such that an in�nite trace belongs to the persistence property,i� all but �nitely many of its pre�xes belong to the �nitary property.P(�) = f� 2 E! j 9w 2 �8w0(w v w0 v �) : w0 2 �gThe four classes of properties are closed under union and intersection, e.g. the union oftwo safety properties is again a safety property. Safety and guarantee properties form dualclasses, i.e. the complement of a safety property is a guarantee property and vice versa.Also the classes of recurrence and persistence properties are dual to each other. By unionand intersection of the four basic classes we get the obligation and reactivity properties.� An obligation property can be obtained by an arbitrary union and intersection ofsafety and guarantee properties.� A reactivity property can be obtained by an arbitrary union and intersection ofrecurrence and persistence properties.The obligation and reactivity properties are closed under union, intersection and comple-ment.3The informal expression good and bad thing are taken from [1]3

Safety Guarantee

Recurrence Persistence

Reactivity

ObligationFigure 1: The Borel Hierarchy of temporal propertiesHierarchy. According to Figure 1 the Borel Hierarchy consists of six classes of proper-ties. The class of obligation properties contain the class of safety and guarantee properties.The obligation properties are strictly contained in the recurrence and persistence proper-ties. Per de�nition the class of reactivity properties strictly contains the class of recurrenceand persistence properties. For the proofs we refer the reader to [16]. In the sequel weonly regard properties of the four basic classes.2.2 TestabilityIn testing we are interested in the relation between the sets of traces, which are executedby the implementation Tr(I) and which belong to the temporal property �. Thus, wehave to make statements about the relation of sets of in�nite traces. The best would be,if we can prove that an implementation ful�lls a property, resp. Tr(I) � �.During a test it is only possible to observe a pre�x w of an in�nite trace of the im-plementation. Let � be the �nitary property from which the in�nitary property � isconstructed. We can decide, whether w 2 � or not. From this we conclude, whether thereis an in�nite extension � from w, which belongs to � or not. Again from this we canmake some conclusions about the relation of all traces of the implementation Tr(I) andthe temporal property �. Between Tr(I) and � there are the following relations possible.1. � = Tr(I) (the so-called behavioral equivalence)2. Tr(I) � � (an implementation I ful�lls the temporal property �)3. � � Tr(I)4. � \ Tr(I) = ; (the traces of � and the implementation I are disjoint)By checking a relation we can obtain the following results:� true, if a relation is veri�ed.� false, if a relation is rejected.� unknown, if we cannot say anything about a relation.4

false
unknown

unknown unknown unknown=Π Tr(I)

Π Tr(I) false
unknown

unknown unknown unknown

Π Tr(I) unknownunknown unknown unknown

Tr(I) = { }Π falseunknown unknown unknown
unknown

Safety Guarantee Recurrence Persistence

Figure 2: Test results for temporal propertiesWe de�ne a property to be a testable property, if we can reject or verify some of the aboverelations. Figure 2 lists the results which can be made for the four basic classes of temporalproperties. In the sequel we explain, why only these results are possible.Safety properties. Let � be the �nitary property from which the safety property � =A(�) is constructed. If w =2 �, then there cannot be an in�nite extension of w whichbelongs to the safety property A(�), since per de�nition all pre�xes of a trace have to bein the �nitary property �. Therefore, the implementation shows at least one trace, whichdoes not belong to the safety property A(�). Neither Tr(I) = A(�) nor Tr(I) � A(�)hold. The safety property is violated. From the fact that there is an in�nite trace of theimplementation which does not belong to the safety property, we cannot state whetherthe relations Tr(I) � A(�) and A(�)\ Tr(I) = ; hold or not.If w 2 � then it is still possible that there is a longer trace w0, which belongs to � ornot. Therefore, we cannot state, whether a possible in�nite extension of w belongs to thesafety property or not. Thus, it is impossible to say anything about a relation betweenA(�) and Tr(I).Guarantee properties. Let � be the �nitary property, from which the guarantee prop-erty 4 � = E(�) is constructed. If w 2 �, then every in�nite extension of w belongs to theguarantee property E(�), since there has only to be one pre�x of the in�nite trace, whichbelongs to �. Therefore, the implementation shows at least one trace, which belongs tothe guarantee property E(�). In this case we can reject, that the set of traces of theimplementation and the guarantee property are disjoint Tr(I)\ E(�) = ;. The guaranteeproperty is validated. We cannot guarantee, that all traces of the implementation belongto the guarantee property, but at least one time the implementation is able to show therequired property. In this case we can neighter reject nor verify the other relations.4The complement of a safety property is a guarantee property. Therefore, we may use a contra positionto reason about test results for a guarantee property. But we prefer to give an own proof idea.5

If w =2 �, then it is still possible that there is an other longer trace w0, which belongsto � or not. Therefore, we cannot state, whether an in�nite extension of w belongs tothe guarantee property property or not. Thus, it is impossible to say anything about arelation between E(�) and Tr(I).Recurrence and persistence properties. For recurrence and persistence propertieswe cannot make any statement about the relation between the traces of the implementationand of the property. From a pre�x w of an in�nite trace � we cannot conclude i� � ful�llsor violates the recurrence or the persistence property.Testable properties. Within this section safety and guarantee properties were iden-ti�ed to be as testable properties, since we can at least observe a violation of a safetyproperty and a validation of a guarantee property. Contrary to veri�cation methods whichverify for every property that an implementation ful�lls the property, in testing, it is evenimpossible to verify that the implementation ful�lls a testable property.3 Representation of temporal propertiesContrary to other test methods which only generate test cases for safety properties, wede�ne a test case for a safety and a guarantee property. For modeling the testable proper-ties we use an automata theoretic approach. The safety property is modeled by a labeledtransition system (LTS) and the guarantee property is modeled by a �nite automaton(FA), which has structural constraints for its end state de�nition.Labeled transition system. A labeled transition system is LTS = (Q;E;R; q0), where� Q is a set of states,� E is a set of labels resp. events,� R � Q� E �Q is a transition relation, and� q0 2 Q is the initial state.Observable events. Since the labeled transition system speci�es all sequences of eventsof the system which should be tested, during the test not all events are observable. Theevents E are determined by E = f�g [([ni=1(Ii [Oi)). � represents internal events e.g.assignments or clock events and Ii and Oi are the inputs and outputs of the i-th process.The inputs and outputs are also called communication events . Let the processes 1 to mbe the processes which control the test. In the sequel we call them test processes5. Wede�ne� OI = [mi=1Ii to be the observable inputs,� OO = [mi=1Oi to be the observable outputs, and� OE = OI [OO to be the observable events.5According to ISO/IEC IS 9646 [13] a system under test is controlled by so-called upper and lowertester. 6

Traces and observables of a labeled transition system. A trace is a sequence ofevents E and an observable is a sequence of observable events OE. We de�ne the tracesof a labeled transition system LTS = (Q;E;R; q0) from a state in M � Q to a state inN � Q by: Tr(LTS;M;N) = fhe0; : : : ; eni 2 E� j9hs0; : : : ; sn+1i 2 Q� : (s0 2M ^ sn+1 2 N ^ 8i 2 0 : : :n : (si; ei; si+1) 2 R)gWe de�ne the observables of a labeled transition system LTS from a state in M � Q to astate in N � Q by: Ob(LTS;M;N) = OE c
Tr(LTS;M;N)The traces of a labeled transition system LTS with an observable o are:Tr(LTS; o) = ft 2 Tr(LTS; fq0g; Q) j o = OE c
tgAll in�nite traces, which are possible in the labeled transition system belong to the safetyproperty or alternatively, the safety property is de�ned by:A(Tr(LTS; fq0g; Q))Finite automaton. A �nite automaton is de�ned by a tuple FA = (S;E; �; s0; F), where� S is a �nite set of states,� E is a set of events,� � � S �E � S is a transition relation,� s0 2 S is the initial state, and� F � S is a set of end states.Traces and observables of a �nite automaton. A �nite automaton FA = (S;E; �; s0;F) can be interpreted as a labeled transition system (S;E; �; s0). Thus, the traces andobservables of a �nite automaton are de�ned by the traces and observables of the corre-sponding labeled transition system. For speci�ng a guarantee property the automaton isnot allowed to contain transitions from end states to non-end states. All in�nite traces,where the automaton cycles in�nitely often in an end state, belong to the guarantee prop-erty. Alternatively, the guarantee property is de�ned by:E(Tr(FA; fs0g; F))A complete treatment of the dependency between automata and temporal properties canbe found in [16] or [14].4 Representation of a test caseA test case [13] describes a tree where the nodes are observable events. We express a treeas a set of observables. The observables of a test case can be grouped into three disjointsets - the observables which cause a PASS, a FAIL or an INCONCLUSIVE verdict. Wecall them pass, fail and inconclusive observables6.6The meaning of these observables is explained in section 5.7

De�nition. A test case is de�ned by a triple TC = (Pass;Fail; Inco), where� Pass � OE� are pass observables,� Inco � OE� are inconclusive observables, and� Fail � OE� are fail observables.Constraints. There are restrictions on the set of observables of a test case.� A test verdict must be unique. There is no observable which cause two verdicts atonce. Formally, this is expressed by:Pass;Fail; Inco are pairwise disjoint� After deriving a test verdict, it is assumed that the test case is �nished and couldnot be continued. This can be expressed by:8v; w 2 Pass[Fail[Inco : v 6< w� The tree of a test case cannot have arbitrary branching. The test processes performa sequence of �xed outputs, and afterwards, they have to wait for the reaction ofthe system under test. Then the test processes again can perform a sequence of�xed outputs. This means for outputs a test case has a branching of size 1 and forinputs a test case can have arbitrary branching. We express that by the notion ofalternative observables. Formally, this is expressed by8v; w 2 Pass [Fail[Inco : v altto wWe introduce two notations of alternative observables.� An observable v is alternative to an observable w, if they have a pre�x p in commonand the �rst elements in which they di�er is an input. Formally, this is denoted byv altto w i�9p; v0; w0 2 OE�; a; b 2 OI : v = p � a � v0 ^ w = p � b � w0 ^ a 6= b� An observable v is minimal alternative to an observable w, if v is an alternative to wand v is only one element longer than the common pre�x. Formally, this is denotedby v altto w i�9p; w0 2 OE�; a; b 2 OI : v = p � a ^ w = p � b � w0 ^ a 6= bTest verdicts for a test case. An implementation I is driven according to the testcase TC = (Pass;Fail; Inco) and performs the observable w. According to the test casewe give the following test verdict verdict(w; TC). We give a PASS, if a pre�x of w isa pass observable. We give a FAIL, if a pre�x of w is a fail observable. We give anINCONCLUSIVE, if a pre�x of w is an inconclusive observable, or the implementationdoes not respond during test time and w is a pre�x of a pass observable. Formally, thetest verdict is de�ned by verdict(w; TC) =� PASS i� 9v 2 Pass : v v w� FAIL i� 9v 2 Fail : v v w� INCONCLUSIVE i� (9v 2 Inco : v v w) _ (9v 2 Pass : w < v)8

5 Formalizing the test case generationNow we know that a test case consists of three disjoint sets of observables and each setcorresponds to a test verdict. In this section we de�ne the relation between observablesrepresenting a test case, a labeled transition system representing an safety property anda �nite automaton representing a guarantee property.An test case assigns a PASS verdict, if the safety property is not violated and theguarantee property is validated during the test. Additionally, we require for a PASSverdict that the system under test again reaches the initial state, such that the next testcase can be applied. It gives an INCONCLUSIVE verdict, if the safety property is notviolated, but also the guarantee property is not validated and it gives a FAIL verdict, ifthe safety property is violated during the test. In the sequel we de�ne the pass, fail andinconclusive observables, such that the above requirements are ful�lled.� A pass observable is an observable from which we can conclude, that the labeledtransition system performs a cycle from its initial state back to the initial state andthe �nite automaton transits from the initial state to an end state.� An inconclusive observable is an observable of the labeled transition system whichhas a pre�x with a pass observable in common, but the �rst event in which theydi�er is an input.� A fail observable is an arbitrary sequence of observable events which has a pre�xwith a pass observable in common and the �rst event in which they di�er is an input.5.1 Possible and unique pass observablesSince we only see a subset of events, which are performed by the implementation, andsince we want to reason about observable events or about reached states, we adapt theUIO-method (unique input output sequences) to our situation. For de�ning the passobservables of a test case we introduce the notion of possible and unique pass observables.A possible pass observable is an observable, such that there exists a corresponding trace,where the labeled transition system LTS can perform a cycle from the initial state to theinitial state and the �nite automaton FA transits form the initial state to an end state.We de�ne the set of possible pass observables PPO by :PPO = Ob(LTS; fq0g; fq0g) \ Ob(FA; fs0g; F)A possible pass observable does not ensure, that every corresponding trace leads the labeledtransition system from its initial state back to its initial state and the �nite automatontransits from its initial state to an end state. For this aim we de�ne so called unique passobservables UPO by:UPO = fw 2 PPO j Tr(LTS; w) � [Tr(LTS; fq0g; fq0g) \ Tr(FA; fs0g; F)]gSince we only consider the maximal corresponding traces of an observable w: Tr(LTS; w),this de�nition works only if the initial state of the labeled transition system is a stablestate, i.e. only observable events can cause progress in the initial state.9

5.2 Test case de�nitionNow we de�ne a test case TC = (Pass;Fail; Inco) for a labeled transition system LTS anda �nite automaton FA .� Pass. For the pass observables of the test case Pass we take a subset of the shortestunique pass observables UPO (see 1.). Each element of the pass observables mustbe alternative to each other element (see 2.) and there is no further shortest uniquepass observable, which is alternative to all pass observables (see 3.).1. Pass � UPO ^2. 8v; w 2 Pass : (v 6= w! v altto w) ^3. 8v 2 UPO : (v 2 Pass_ 9w 2 Pass : :(v altto w))� Inco. For the pass observables Pass we de�ne the shortest inconclusive observablesof the test case Inco. Inco denotes the minimal alternative observables of Pass.Inco = fv 2 Ob(LTS; fq0g; Q) j 9w 2 Pass : v altto wg � pref(Pass)� Fail. The fail observables Fail are the minimal alternatives of the pass and incon-clusive observables.Fail = fv 2 OE� j 9w 2 Pass[Inco : v altto wg � pref(Pass[Inco)6 The projectThe work presented in this paper is performed at the University of Berne within theresearch project 'Conformance Testing - A Tool for the Generation of Test Cases'. Withinthis project an SDL description [2, 4] is used to specify a safety property and a MessageSequence Chart (MSC) [5, 6] is used to specify a guarantee property7. The output is atest case in TTCN notation (cf. part 3 of [13]).6.1 Speci�cation and Description Language (SDL)An SDL speci�cation can be interpreted as a labeled transition system. The relationbetween an SDL description and a labeled transition system (Q;E;R; q0) can be describedin the following way. Intuitively Q denotes the global system states, which are determinedby the control states of the processes, the contents of the signal queues and the values of thevariables. The state q0 is the initial state of the SDL speci�cation. The transition relationR determines for every state q 2 Q and for every event e 2 E the corresponding nextglobal state of the SDL system. The events E describe the actions of the SDL processes(e.g. inputs, outputs, tasks, decisions, etc.). Since there exist di�erent approaches to derivea labeled transition system from an SDL speci�cation [17, 10], we do not want to go intodetails here.7According to ISO/IEC IS 9646 [13] the guarantee property (i.e. the MSC) can be interpreted as thetest purpose of the test case. 10

6.2 Message Sequence Chart (MSC)An MSC (e.g. Figure 3 (a)) describes a partially ordered set of events. It can be interpretedas a �nite automaton. The automaton accepts traces, which contain the communicationevents of the MSC and which are compatible with its partial order. The relation betweenan MSC and a �nite automaton is described in two steps by means of the example inFigure 3. The automaton Automaton 1 explained in the �rst step accepts exactly thesequences of events which are de�ned by the partial order of the MSC MSC 1. In a secondstep Automaton 1 is extended by additional events and Automaton 2 is gained.� Step 1: Automaton 1 in Figure 3 accepts exactly the sequences of events, which arecompatible with the partial order of the MSCMSC 1. One way for the translation ofan MSC into a �nite automaton is described in [7]. MSC 1 consists of two instancesP1 and P2, which exchange the signal CR two times. It describes a partial orderedset of communication events, which allows the traces <P1!CR,P1!CR,P2?CR,P2?CR>and <P1!CR,P2?CR,P1!CR,P2?CR>. Automaton 1 accepts these traces by transitingfrom the initial state s0 to the �nal state f .� Step 2: An MSC describes a part of the signal exchange of an SDL run by apartially ordered set of events. Our approach compares traces of a �nite automatonrepresenting an MSC and traces of a labeled transition system representing an SDLdescription. In order to do this, the �nite automaton must be able to accept eventsof the labeled transition system, which are not explicitly mentioned by the MSC.For this aim the �nite automaton is extended by Null transitions which consumearbitrary events of the labeled transition system without changing the state. Fortest case generation we require, that the signal exchange of the MSC is performedwithout interrupts, i.e. between two communication events on an instance axis thecorresponding process is not allowed to perform further communication events8. Toensure this, for some states the Null transitions are restricted by certain events whichshould not cause a Null transition.The example in Figure 3 may clarify the extension. Automaton 2 is gained from theAutomaton 1 by introducing Null transitions for every state. Since we do not allowfurther communication events of an instance i between two communication events onits instance axis, we disallow its outputs Oi and its inputs Ii for some states. E.g. instate s1 the instance P1 has already performed the communication event P1!CR andshould perform the communication event P1!CR. Therefore, in state s1 we excludethe outputs O1 and inputs I1 of the instance P1 from the Null transitions. This factis stated by the arrow inscription E � I1�O1. In same manner the Null transitionsof state s2, s3 and s4 are constructed. In the start state s0 and in the �nal state fall possible communication events E are valid.98This restriction may be weakened to allow optional signals or abstractions in the MSC description.9According to the test case de�nition in ISO/IEC IS 9646 [13] these events can be interpreted as thepreamble and the postamble of the test case. 11

s0

f

s1

s2 s3

s4

P2?CR

P1!CR

P2?CR

P1!CR

P2?CR

P1!CR

E

E

E-I1-O1

E-I1-I2-O1-O2

E-I2-O2

E

s0

f

s1

s2 s3

s4

P2?CR

P1!CR

P2?CR

P1!CR

P1!CR

P2?CR

P1 P2

CR

CR

Automaton 2Automaton 1MSC 1(a) (b) (c)Figure 3: MSC and corresponding �nite automata6.3 Calculation of a test caseWithin section 5.2 a test case for a given labeled transition system (representing a safetyproperty) and a given �nite automaton (representing a guarantee property) is de�ned,but there is no algorithm to calculate it. By calculating a test case we have to solve atypical reachability problem, i.e. sometimes a certain event is executed or a certain stateis reached.For �nite automata the reachability problem is solved and there exist e�cient algo-rithms to calculate shortest traces, which lead to a certain state or contain a certainevent [12]. But the decidability of the reachability problem of the labeled transition sys-tem depends heavily on its design. In [3] it is proved, that the reachability problem forcommunicating �nite state machines which communicate by means of unbounded FIFObu�ers is undecidable. Subsequently, the reachability problem for a labeled transitionsystem which represents asynchronously communicating processes (i.e. the base model ofSDL) is undecidable.Our way to search for observables with the required properties is to simulate the labeledtransition system and the �nite automaton in parallel (i.e. a kind of 'on the
y validation'[15]). There are di�erent search methods, like depth search and breadth search. Breadthsearch is not usable, since it is impossible to store all states10. Also depth search is notapplicable, since it is not possible to guarantee termination. As a consequence we use ak-bounded depth search which evaluates all possible traces of length k. If no trace withrequired properties is found, then the search may be repeated with a higher bound orstopped without results.The procedure of generating test cases. The procedure of generating a test casebased on an SDL description and an MSC can be structured in four steps:10Note, a state represents a global state of the SDL system, i.e. the control states of the processes, thecontents of the queues and the values of the variables.12

� Step 1: In a k-bounded depth search with increasing bound k possible pass observ-ables are calculated.� Step 2: Based on the possible pass observables we calculate the unique pass observ-ables . If there are no unique pass observables we go back to step 1.� Step 3: We choose a subset of the shortest unique pass observables , which arealternative to each other. These are the pass observables of our test case. Based onthe pass observables we calculate the corresponding inconclusive observables.� Step 4: The pass observables and the inconclusive observables have to be trans-formed into TTCN. Furthermore, the fail observables have to be added by means ofa TTCN default behavior description.Further information on the project and a complete example for our approach can be foundin [8] and [9].Summary and OutlookThe presented paper deals with the automatic generation of test cases for temporal prop-erties. Temporal properties are classi�ed by means of the Borel Hierarchy. The safety andthe guarantee property are identi�ed to be testable temporal properties. For the testabletemporal properties a test case de�nition is given. The test case de�nition is applied topractical testing by relating the safety property to an SDL description and by relating anMSC to a guarantee property. Our approach is implemented at the University of Berneand its applicability for real systems will be proven within a following case study.References[1] B. Alpern and F.B. Schneider. Recognizing Safety and Liveness. Distributed Com-puting, 2:117{126, 1987.[2] Ferenc Belina, Dieter Hogrefe, and Sarma Amardeo. SDL with Applications fromProtocol Speci�cation. Prentice Hall International, 1991.[3] Daniel Brand and Pitro Za�ropulo. On Communicating Finite State Machines. Jour-nal of the Association for Computing Machinery, 30(2):323{342, April 1983.[4] SG X CCITT. Recommendation Z.100: Speci�cation and Description Language(SDL), 1992. Geneva.[5] SG X CCITT. Recommendation Z.120: Message Sequence Chart (MSC), 1992.Geneva.[6] Jens Grabowski, Peter Graubmann, and Ekkart Rudolph. The Standardisation ofMessage Sequence Charts. Proceedings of the IEEE Software Engineering StandardsSymposium 1993. 13

[7] Jens Grabowski, Dieter Hogrefe, Peter Ladkin, Stefan Leue, and Robert Nahm. Con-formance Testing - A Tool for the Generation of Test Cases. Interim Report of the F& E project contract no. 233, funded by Swiss PTT, 1992.[8] Jens Grabowski, Dieter Hogrefe, and Robert Nahm. A Method for the Generation ofTest Cases Based on SDL and MSCs. Technical Report IAM 93-010, University ofBerne, Switzerland,1993.[9] Jens Grabowski, Dieter Hogrefe, and Robert Nahm. Test Case Generation with TestPurpose Speci�cation by MSCs. Proceedings of the 6th SDL Forum, North-Holland,1993.[10] Dieter Hogrefe. Automatic Generation of Test Cases from SDL-Speci�cations. SDL-Newsletters, 12, 1988.[11] Gerard J. Holzman. Design and Validation of Computer Protocols. Prentice-HallInternational, Inc., 1991.[12] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory, Lan-guages and Computation. Addison Wesley, 1979.[13] ISO/IEC JTC 1/SC 21 N. Information Technology - Open System Interconnection -Conformance Testing Methodology and Framework - Part1-5. International Standard9646, ISO/IEC, 1991.[14] M. Kaminski. A Classi�cation of !-regular Languages. Theoretical Computer Science,36:217{229, 1985.[15] G�unther Karjoth. Generating Transition Graphs from LOTOS Speci�cations. InMichel Diaz and Roland Groz, editors, FORTE'92, pages 275{287, October 1992.[16] Zohar Manna and Amir Pnueli. A Hierarchy of Temporal Properties. Proceedingsof the 9th Annual ACM Symposium on Principles of Distributed Computing, pages377{408. ACM Press, 1990. 1990 ACM-0-89791-404-X/90/0008/3777.[17] Robert Nahm. Semantics of Simple SDL. Proceedings of the GI/ITG workschop onformal description techniques for distributed systems in Magdeburg (Germany), 1993.
14

A Mathematical notationSet of sequences. Let A be an arbitrary set, then we de�ne the following three sets� A� are the �nite sequences over A,� A! are the in�nite sequences over A and� A1 = A� [A! are the �nite and in�nite sequences.Operations on sequences. Let S � A1, t; u; v 2 A1 and a; b; c; d; a0; : : : ; an 2 A� hi is the empty sequence,� ha0; : : : ; ani is the �nite sequence consisting of the elements a0; : : : ; an,� t � u denotes the concatenation of t and u (Note, if t is in�nite the t � u = t),� t < u "t is a strict pre�x of u" holds, i� 9v 6= hi : t � v = u,� t v u "t is a pre�x of u" holds, i� 9v : t � v = u,� #t denotes the length of t (Note, if t is in�nite then #t =1),� a c
t denotes the �ltered trace of t, which contains only the element a,e.g. a c
 < a; b; a; c >=< a; a >. As a generalisation of this �lter operation, the �rstoperand may also be a set,� f : A! A0 can be canonically extended to sequences, byf(< a0; : : : ; an; : : : >) =< f(a0); : : : ; f(an); : : : >,� f : A1 ! A01 can be canonically extended to sets of sequences byf(S) = ff(t) j t 2 Sg,� pref(S) = ft j 9u 2 S : t v ug, is the set of pre�xes of S,� S = ft 2 S j :9u 2 S : t < ug are the maximal sequences and� S = ft 2 S j 8u 2 S : #t � #ug are the shortest sequences.
15

