Test Case Generation for Temporal Properties

Robert Nahm Jens Grabowski Dieter Hogrefe

Institut fur Informatik, Universitat Bern

Langgassstr. 51, CH-3012 Bern

IAM-93-013

June 1993

Abstract!

The goal of testing is to make statements about the relation between the traces of an
implementation and a temporal property. This is not possible for all temporal properties.
Within this paper safety and guarantee properties are identified to be testable temporal
properties and for these testable properties a test case definition is given. This is done
by representing a safety property as a labeled transition system and by representing the
guarantee property as a finite automaton. The test case definition is applied to practi-
cal testing by using SDL descriptions to specify safety properties and by using Message
Sequence Charts (MSCs) to specify guarantee properties.

CR Categories and Subject Descriptors: C.2.0 [Computer-Communication Net-
works]: General; C.2.2 [Computer-Communication Networks]: Network Protocols; D.2.5
[Software Engineering]: Testing and Debugging

'This work is performed within the F & E project, no. 233, ’Conformance Testing — A Tool for the
Generation of Test Cases’, funded by Swiss PTT.

1 Introduction

The automatic generation of test cases for communication systems (e.g. OSI, ISDN) can
be based on formal specifications written in a standardized formal description technique
(FDT, i.e. LOTOS, Estelle, or SDL). For test case generation a formal specification can
be simulated and the possible interactions between a system and its environment can
be generated automatically. A communication system may have infinite traces since in
general it should not terminate. Test cases are finite and therefore, we have to select finite
parts of the potentially infinite traces. This can be done by defining reachability criteria,
i.e. the simulation of the specification is aborted, if a reachability criterion is fulfilled. For
the selected traces test verdicts have to be assigned. One way to do this is to define for
every test verdict an own reachability criterion. In theoretical and practical approaches the
definition of reachability criteria and the assignment of test verdicts is solved differently.

Theoretical approaches. Approaches coming from research like UIO [11] or the W-
method concentrate on the test case generation for finite state machines. The reachability
criteria are determined by the used conformance relation (e.g. behavioral equivalence),
by fault coverage, or by assumptions about the implementation (e.g. the implementation
behaves like a finite automaton with a certain number of states). The assignment of test
verdicts is solved very simple. There is only a PASS and an implicit FAIL verdict, i.e. every
system behavior which does not get a PASS gets a FAIL. Therefore, only reachability
criteria for the PASS verdict have to be defined. One problem of the mentioned approaches
is that they cannot be applied to systems with infinite state space. Unfortunately, FDTs
force the description of systems with an infinite state space. Infinite signal queues of SDL
processes or unlimited data descriptions are two examples for this. However, there can
not exist test methods which guarantee behavioral equivalence for systems with an infinite
state space. Even finite state machines which communicate by means of unbounded FIFO
buffers (i.e. the base model of SDL) are as powerful as Turing Machines [3] for which the
behavioral equivalence is undecidable [12]. As a consequence the behavioral equivalence
can not be used as conformance relation to derive reachability criteria for generating test
cases.

Practical testing. The goal of practical testing is to show certain properties and not
to prove a behavioral equivalence between a specification and an implementation. The
properties are defined by so-called test purposes. Typically, a test purpose is defined as a
sequence of events which have to be performed or a sequence of states which have to be
reached. Thus, a test purpose defines directly the reachability criterion for the selection of
a test case. In practical testing there exist three test verdicts PASS, FAIL, and INCON-
CLUSIVE. PASS is given, if the implementation presents a behavior, which is allowed by
the specification and which fulfills the test purpose. FAIL is given, if the implementation
presents a behavior, which is not allowed by the specification. INCONCLUSIVE is given,
if neither a PASS nor a FAIL can be assigned. The disadvantage of practical testing is, that
it does not state clearly the relation between the specification and the implementation.

Our approach. OQOur approach formalizes practical testing. We concentrate on certain
temporal properties. Especially safety properties which are described by formal specifi-

cations and guarantee properties which are specified by the test purposes. A guarantee
property states that a sequence of events is performed or that a sequence of states is
reached. Thus, guarantee properties can be used to estimate a reachability criteria for
the selection of finite test cases from infinite traces. As in practical testing our approach
also uses the test verdicts PASS, FAIL and INCONCLUSIVE. PASS is given, if the im-
plementation presents a behavior which does not violate the safety property and fulfills
the guarantee property. FAIL is given, if the implementation violates the safety property.
INCONCLUSIVE is given, if the implementation does not violate the safety property, but
does not fulfill the guarantee property. One advantage of our approach is, that it is not
bounded to finite state specifications. Moreover, the notion of test purposes is formalized
and the assignment of test verdicts can be done automatically.

The rest of the paper is organized in the following way. In section 2 we introduce several
temporal properties and classify them by means of the Borel Hierarchy. Furthermore, we
identify safety and guarantee properties to be testable temporal properties. In section 3
the representation of temporal properties by automata is explained. Afterwards (section
4) the representation of a test case is introduced and the assignment of test verdicts is
described. In section 5 we formalize the test case generation by defining a test case for
a given safety and a given guarantee property. In the last section (section 6) a research
project is presented which uses the presented approach in order to generate TTCN test
cases automatically from SDI specifications and MSCs. The used mathematical notation
is explained within the appendix.

2 Testable Properties

Section 2.1 provides a classification of temporal properties. For testing, the classification
of temporal properties is of interest?, since different properties may assume a different test
principles, cause other test verdicts, or are not testable. In section 2.2 testing is explained
as relating the sets of traces of the implementation and the of temporal property, by
observing only one finite trace of the implementation.

2.1 Temporal properties

A Communication systems has its main interest in maintaining an ongoing interaction
with its environment, rather then terminating. Theoretically, a communication system
can be viewed as a generator of traces. Let E be the set of events which are executed by
the communication system. We assume a trace to be a sequence of events and define a
property to be a set of traces. We distinguish between finitary properties i.e. sets of finite
traces ® C E* and infinitary properties i.e. sets of infinite traces I C £*. For simplicity
we regard only infinitary properties. In the case that the system terminates a trace may
always be extended by means of an infinite sequence of dummy events, e.g. clock events.
An implementation [is said to have the property II, if all traces of the implementation
Tr(I) C E* belong to the property II,i.e. TH{I) C II. If we are satisfied to restrict ourselves
to expressing only safety properties, then the relatively simple finitary properties suffice.

2The theory of verification is interested in the classification of temporal properties, since the different
properties are associated with different proof principles, e.g. safety properties are proven by computational
induction and liveness properties are proven by using a well founded principle.

The only justification for using infinitary properties, which are considerable more complex
is for expressing liveness properties. In general liveness properties are not testable, since
one has to observe a complete trace to show, that a liveness property is violated. Therefore,
we present a finer classification of the non-safety properties by the so-called Borel Hierarchy
[16]. This classification enables us to distinguish between properties stating, that a certain
good thing® occurs at least once or occurs infinitely many times in a trace. We characterize
the different properties of the Borel Hierarchy by the way they are constructed from
languages over finite sequences. In the sequel we construct infinitary properties from
finitary ones and introduce four basic classes of properties.

o A safety property is a property, which states, that a good thing always occurs. We
construct a safety property A(®) from a finitary property @, such that an infinite
trace belongs to the safety property, iff all its prefixes are in the finitary property.

A®)={c € EY |VwLCo:we€ &}

o A guarantee property is a property, which states, that a good thing occurs at least
once. We construct a guarantee property £(®) from a finitary property @, such that
an infinite trace belongs to the guarantee property, iff at least one of its prefixes is
in the finitary property.

E@P)={o€ceE|Fwlo:we d}

o A recurrence property is a property, which states, that a good thing occurs infinitely
often. We construct a recurrence property R(®) from a finitary property ®, such
that an infinite trace belongs to the recurrence property, iff infinitely many prefixes
are in the finitary property.

R(®)={c€e E“|VweoTw'(wCw Co):w € P}

o A persistence property is a property, which states, that a good thing occurs contin-
uously from a certain point on. We construct a persistence property P(®) from a
finitary property @, such that an infinite trace belongs to the persistence property,
iff all but finitely many of its prefixes belong to the finitary property.

P(@)={cec F|TweoVu'(wCw Co):w € b}

The four classes of properties are closed under union and intersection, e.g. the union of
two safety properties is again a safety property. Safety and guarantee properties form dual
classes, i.e. the complement of a safety property is a guarantee property and vice versa.
Also the classes of recurrence and persistence properties are dual to each other. By union
and intersection of the four basic classes we get the obligation and reactivity properties.

e An obligation property can be obtained by an arbitrary union and intersection of
safety and guarantee properties.

e A reactivity property can be obtained by an arbitrary union and intersection of
recurrence and persistence properties.

The obligation and reactivity properties are closed under union, intersection and comple-
ment.

®The informal expression good and bad thing are taken from [1]

[Reactivity }

[Recurrence } [Persistence }

[Obligation }

sty || cwme |

Figure 1: The Borel Hierarchy of temporal properties

Hierarchy. According to Figure 1 the Borel Hierarchy consists of six classes of proper-
ties. The class of obligation properties contain the class of safety and guarantee properties.
The obligation properties are strictly contained in the recurrence and persistence proper-
ties. Per definition the class of reactivity properties strictly contains the class of recurrence
and persistence properties. For the proofs we refer the reader to [16]. In the sequel we
only regard properties of the four basic classes.

2.2 Testability

In testing we are interested in the relation between the sets of traces, which are executed
by the implementation 7W{/) and which belong to the temporal property II. Thus, we
have to make statements about the relation of sets of infinite traces. The best would be,
if we can prove that an implementation fulfills a property, resp. Tn(I) C II.

During a test it is only possible to observe a prefix w of an infinite trace of the im-
plementation. Let ® be the finitary property from which the infinitary property II is
constructed. We can decide, whether w € ® or not. From this we conclude, whether there
is an infinite extension ¢ from w, which belongs to II or not. Again from this we can
make some conclusions about the relation of all traces of the implementation 7r{([) and
the temporal property 1. Between Tr(/) and II there are the following relations possible.

1. Il = Tr(I) (the so-called behavioral equivalence)

2. T(I)C I (an implementation [fulfills the temporal property II)

3. 1 C Tr(I)

4. N TH(I)=10 (the traces of IT and the implementation I are disjoint)
By checking a relation we can obtain the following results:

e true, if a relation is verified.

o false, if a relation is rejected.

o unknown, if we cannot say anything about a relation.

Safety Guarantee Recurrence Persistence
n= TrQ) unfkarllgivn unknown unknown unknown
Ty € N un];(arllg\e/vn unknown unknown unknown
n < TrQ) unknown unknown unknown unknown

N Ty ={} unknown unﬁm . unknown unknown

Figure 2: Test results for temporal properties

We define a property to be a testable property, if we can reject or verify some of the above
relations. Figure 2 lists the results which can be made for the four basic classes of temporal
properties. In the sequel we explain, why only these results are possible.

Safety properties. Let ® be the finitary property from which the safety property 11 =
A(®) is constructed. If w ¢ @, then there cannot be an infinite extension of w which
belongs to the safety property A(®), since per definition all prefixes of a trace have to be
in the finitary property ®. Therefore, the implementation shows at least one trace, which
does not belong to the safety property A(®). Neither TH{I) = A(®) nor Tr(l) C A(®)
hold. The safety property is violated. From the fact that there is an infinite trace of the
implementation which does not belong to the safety property, we cannot state whether
the relations Tr(I) 2 A(®) and A(®)N Tr{I) = (hold or not.

If w € ® then it is still possible that there is a longer trace w’, which belongs to ® or
not. Therefore, we cannot state, whether a possible infinite extension of w belongs to the
safety property or not. Thus, it is impossible to say anything about a relation between

A(®) and TH(1).

Guarantee properties. Let ® be the finitary property, from which the guarantee prop-
erty * Il = £(®) is constructed. If w € ®, then every infinite extension of w belongs to the
guarantee property £(®), since there has only to be one prefix of the infinite trace, which
belongs to ®. Therefore, the implementation shows at least one trace, which belongs to
the guarantee property £(®). In this case we can reject, that the set of traces of the
implementation and the guarantee property are disjoint TH{I)NE(P) = . The guarantee
property is validated. We cannot guarantee, that all traces of the implementation belong
to the guarantee property, but at least one time the implementation is able to show the
required property. In this case we can neighter reject nor verify the other relations.

*The complement of a safety property is a guarantee property. Therefore, we may use a contra position
to reason about test results for a guarantee property. But we prefer to give an own proof idea.

If w ¢ &, then it is still possible that there is an other longer trace w’, which belongs
to @ or not. Therefore, we cannot state, whether an infinite extension of w belongs to
the guarantee property property or not. Thus, it is impossible to say anything about a
relation between £(®) and T'n([1).

Recurrence and persistence properties. For recurrence and persistence properties
we cannot make any statement about the relation between the traces of the implementation
and of the property. From a prefix w of an infinite trace ¢ we cannot conclude iff ¢ fulfills
or violates the recurrence or the persistence property.

Testable properties. Within this section safety and guarantee properties were iden-
tified to be as testable properties, since we can at least observe a violation of a safety
property and a validation of a guarantee property. Contrary to verification methods which
verify for every property that an implementation fulfills the property, in testing, it is even
impossible to verify that the implementation fulfills a testable property.

3 Representation of temporal properties

Contrary to other test methods which only generate test cases for safety properties, we
define a test case for a safety and a guarantee property. For modeling the testable proper-
ties we use an automata theoretic approach. The safety property is modeled by a labeled
transition system (LTS) and the guarantee property is modeled by a finite automaton
(FA), which has structural constraints for its end state definition.

Labeled transition system. A labeled transition system is LTS = (Q, E, R, qo), where

e () is a set of states,

e F is a set of labels resp. events,

R C @ x Exis a transition relation, and

qo € @ is the initial state.

Observable events. Since the labeled transition system specifies all sequences of events
of the system which should be tested, during the test not all events are observable. The
events £ are determined by E = {7} U (UL (I; UO,)). T represents internal events e.g.
assignments or clock events and [I; and O; are the inputs and outputs of the i-th process.
The inputs and outputs are also called communication events. Let the processes 1 to m
be the processes which control the test. In the sequel we call them fest processes’. We

define
o OI= UL I; to be the observable inputs,
e OO0 =U",0; to be the observable outputs, and

o OF = OIU OO to be the observable events.

®According to ISO/IEC IS 9646 [13] a system under test is controlled by so-called upper and lower
tester.

Traces and observables of a labeled transition system. A frace is a sequence of
events I and an observable is a sequence of observable events OF. We define the traces
of a labeled transition system LTS = (@, £, R, ¢o) from a state in M C () to a state in
N CQ by:

TALTS, M, N)={({eo,...,e,) € E™ |

3(S0svesSny1) EQT (S0 EM A Syt EN AVIEOQ...n:(5,€,541) € R)}

We define the observables of a labeled transition system LTS from a state in M C @) to a
state in V C) by:
OW(LTS,M,N)=O0OF@©Tr(LTS,M,N)

The traces of a labeled transition system LTS with an observable o are:
THLTS, 0) = {t € THLTS, {0}, Q) | 0 = OL@1}

All infinite traces, which are possible in the labeled transition system belong to the safety
property or alternatively, the safety property is defined by:

A(THLTS, {q0},Q))

Finite automaton. A finite automaton is defined by a tuple FA = (5, I, 8, 50, F'), where

e 5 is a finite set of states,
e F is a set of events,

o 6 C 5 X FE x5 is a transition relation,

sg € 5 is the initial state, and

e ['C Sis aset of end states.

Traces and observables of a finite automaton. A finite automaton FA = (5, F, ¢, s,
F) can be interpreted as a labeled transition system (5, F,4,5s,). Thus, the traces and
observables of a finite automaton are defined by the traces and observables of the corre-
sponding labeled transition system. For specifing a guarantee property the automaton is
not allowed to contain transitions from end states to non-end states. All infinite traces,
where the automaton cycles infinitely often in an end state, belong to the guarantee prop-
erty. Alternatively, the guarantee property is defined by:

E(THFA,{so}, F))

A complete treatment of the dependency between automata and temporal properties can
be found in [16] or [14].

4 Representation of a test case

A test case [13] describes a tree where the nodes are observable events. We express a tree
as a set of observables. The observables of a test case can be grouped into three disjoint

sets - the observables which cause a PASS, a FAIL or an INCONCLUSIVE verdict. We

call them pass, fail and inconclusive observables®.

5The meaning of these observables is explained in section 5.

Definition. A test case is defined by a triple T'C' = (Pass, Fail, Inco), where

o Pass C OF are pass observables,

e Inco C OF" are inconclusive observables, and

o Fail C OF" are fail observables.

Constraints. There are restrictions on the set of observables of a test case.

e A test verdict must be unique. There is no observable which cause two verdicts at
once. Formally, this is expressed by:

Pass, Fuail, Inco are pairwise disjoint

o After deriving a test verdict, it is assumed that the test case is finished and could
not be continued. This can be expressed by:

Vv, w € PassU FailU Inco: v [w

e The tree of a test case cannot have arbitrary branching. The test processes perform
a sequence of fixed outputs, and afterwards, they have to wait for the reaction of
the system under test. Then the test processes again can perform a sequence of
fixed outputs. This means for outputs a test case has a branching of size 1 and for
inputs a test case can have arbitrary branching. We express that by the notion of
alternative observables. Formally, this is expressed by

Yo, w € PassU FailU Inco: v altto w

We introduce two notations of alternative observables.

e An observable v is alternative to an observable w, if they have a prefix p in common
and the first elements in which they differ is an input. Formally, this is denoted by
v altto w iff

dp,v',w' € OF ;a,be Ol:v=p-a- v Aw=p-b-w' ANa#b

e An observable v is minimal alternative to an observable w, if v is an alternative to w
and v is only one element longer than the common prefix. Formally, this is denoted
by v altto w iff

dp,w' € OF ;a,b€ Ol:v=p-ahw=p-b-w Aa#b

Test verdicts for a test case. An implementation [is driven according to the test
case TC' = (Pass, Fail, Inco) and performs the observable w. According to the test case
we give the following test verdict verdict(w,T'C'). We give a PASS, if a prefix of w is
a pass observable. We give a FAIL, if a prefix of w is a fail observable. We give an
INCONCLUSIVE, if a prefix of w is an inconclusive observable, or the implementation
does not respond during test time and w is a prefix of a pass observable. Formally, the
test verdict is defined by verdict(w,TC') =

e PASS iff v € Pass: v C w
o FAIL iff v e Fail:vC w
o INCONCLUSIVE iff (v € Inco:vC w) V (Jv € Pass: wC v)

5 Formalizing the test case generation

Now we know that a test case consists of three disjoint sets of observables and each set
corresponds to a test verdict. In this section we define the relation between observables
representing a test case, a labeled transition system representing an safety property and
a finite automaton representing a guarantee property.

An test case assigns a PASS verdict, if the safety property is not violated and the
guarantee property is validated during the test. Additionally, we require for a PASS
verdict that the system under test again reaches the initial state, such that the next test
case can be applied. It gives an INCONCLUSIVE verdict, if the safety property is not
violated, but also the guarantee property is not validated and it gives a FAIL verdict, if
the safety property is violated during the test. In the sequel we define the pass, fail and
inconclusive observables, such that the above requirements are fulfilled.

e A pass observable is an observable from which we can conclude, that the labeled
transition system performs a cycle from its initial state back to the initial state and
the finite automaton transits from the initial state to an end state.

e An inconclusive observable is an observable of the labeled transition system which
has a prefix with a pass observable in common, but the first event in which they
differ is an input.

e A fail observable is an arbitrary sequence of observable events which has a prefix
with a pass observable in common and the first event in which they differ is an input.

5.1 Possible and unique pass observables

Since we only see a subset of events, which are performed by the implementation, and
since we want to reason about observable events or about reached states, we adapt the
UIO-method (unique input output sequences) to our situation. For defining the pass
observables of a test case we introduce the notion of possible and unique pass observables.
A possible pass observable is an observable, such that there exists a corresponding trace,
where the labeled transition system LTS can perform a cycle from the initial state to the
initial state and the finite automaton FA transits form the initial state to an end state.
We define the set of possible pass observables PPO by :

PPO = OWLTS, {ao}, {as}) N OB(FA,{s5}, F)

A possible pass observable does not ensure, that every corresponding trace leads the labeled
transition system from its initial state back to its initial state and the finite automaton
transits from its initial state to an end state. For this aim we define so called unique pass

observables UPQO by:
UPO={we PPO | Tr(LTS,w) C [TH(LTS,{q},{q}) N TH{FA,{s0}, F)]}

Since we only consider the maximal corresponding traces of an observable w: Tr(LTS, w),
this definition works only if the initial state of the labeled transition system is a stable
state, i.e. only observable events can cause progress in the initial state.

5.2 Test case definition

Now we define a test case T'C' = (Pass, Fail, Inco) for a labeled transition system LTS and
a finite automaton FA .

e Pass. For the pass observables of the test case Pass we take a subset of the shortest
unique pass observables UPQO (see 1.). Each element of the pass observables must
be alternative to each other element (see 2.) and there is no further shortest unique
pass observable, which is alternative to all pass observables (see 3.).

1. PassCUPO A
2. Vov,w€ Pass: (v #w — v alttow) A
3. Vv elUPO:(ve PassV Iw € Pass: —(v altto w))

e Inco. For the pass observables Pass we define the shortest inconclusive observables
of the test case Inco. Inco denotes the minimal alternative observables of Pass.

Inco= {v € Ob(LTS,{q},Q) | Jw € Pass: v altto w} — pref(Pass)

o Fazl. The fail observables Fail are the minimal alternatives of the pass and incon-
clusive observables.

Fail={v € OF" | 3w € PassU Inco: v altto w} — prefl PassU Inco)

6 The project

The work presented in this paper is performed at the University of Berne within the
research project ’Conformance Testing - A Tool for the Generation of Test Cases’. Within
this project an SDL description [2, 4] is used to specify a safety property and a Message
Sequence Chart (MSC) [5, 6] is used to specify a guarantee property’. The output is a
test case in TTCN notation (cf. part 3 of [13]).

6.1 Specification and Description Language (SDL)

An SDL specification can be interpreted as a labeled transition system. The relation
between an SDI description and a labeled transition system (@, £, R, ¢o) can be described
in the following way. Intuitively ¢ denotes the global system states, which are determined
by the control states of the processes, the contents of the signal queues and the values of the
variables. The state g is the initial state of the SDL specification. The transition relation
R determines for every state ¢ €) and for every event e € F the corresponding next
global state of the SDL system. The events I describe the actions of the SDL processes
(e.g. inputs, outputs, tasks, decisions, etc.). Since there exist different approaches to derive
a labeled transition system from an SDL specification [17, 10], we do not want to go into
details here.

" According to ISO/TEC IS 9646 [13] the guarantee property (i.e. the MSC) can be interpreted as the
test purpose of the test case.

10

6.2 Message Sequence Chart (MSC)

An MSC (e.g. Figure 3 (a)) describes a partially ordered set of events. It can be interpreted
as a finite automaton. The automaton accepts traces, which contain the communication
events of the MSC and which are compatible with its partial order. The relation between
an MSC and a finite automaton is described in two steps by means of the example in
Figure 3. The automaton Automaton 1 explained in the first step accepts exactly the
sequences of events which are defined by the partial order of the MSC MSC' 1. In a second
step Automaton 1 is extended by additional events and Automaton 2 is gained.

o Step 1: Automaton 1 in Figure 3 accepts exactly the sequences of events, which are
compatible with the partial order of the MSC MSC' 1. One way for the translation of
an MSC into a finite automaton is described in [7]. MSC I consists of two instances
P1 and P2, which exchange the signal CR two times. It describes a partial ordered
set of communication events, which allows the traces <P1!'CR,P1!CR,P27CR,P27CR>
and <P1!CR,P27CR,P1!CR,P27CR>. Automaton 1 accepts these traces by transiting
from the initial state sy to the final state f.

o Step 2: An MSC describes a part of the signal exchange of an SDL run by a
partially ordered set of events. Our approach compares traces of a finite automaton
representing an MSC and traces of a labeled transition system representing an SDL
description. In order to do this, the finite automaton must be able to accept events
of the labeled transition system, which are not explicitly mentioned by the MSC.

For this aim the finite automaton is extended by Nwull transitions which consume
arbitrary events of the labeled transition system without changing the state. For
test case generation we require, that the signal exchange of the MSC is performed
without interrupts, i.e. between two communication events on an instance axis the
corresponding process is not allowed to perform further communication events®. To
ensure this, for some states the Null transitions are restricted by certain events which
should not cause a Null transition.

The example in Figure 3 may clarify the extension. Automaton 2 is gained from the
Automaton 1 by introducing Null transitions for every state. Since we do not allow
further communication events of an instance ¢ between two communication events on
its instance axis, we disallow its outputs O; and its inputs I; for some states. E.g. in
state s, the instance P1 has already performed the communication event P1'C'R and
should perform the communication event P1!C'R. Therefore, in state s; we exclude
the outputs O, and inputs I; of the instance P1 from the Null transitions. This fact
is stated by the arrow inscription £ — I, — O;. In same manner the Null transitions
of state s5, s3 and s, are constructed. In the start state sy and in the final state f
all possible communication events E are valid.’

8This restriction may be weakened to allow optional signals or abstractions in the MSC description.
® According to the test case definition in ISO/IEC IS 9646 [13] these events can be interpreted as the
preamble and the postamble of the test case.

11

P1 P2

CR
E-11-12-01-02
CR
(@ MSC1 (b) Automaton 1 (c) Automaton 2

Figure 3: MSC and corresponding finite automata

6.3 Calculation of a test case

Within section 5.2 a test case for a given labeled transition system (representing a safety
property) and a given finite automaton (representing a guarantee property) is defined,
but there is no algorithm to calculate it. By calculating a test case we have to solve a
typical reachability problem, i.e. sometimes a certain event is executed or a certain state
is reached.

For finite automata the reachability problem is solved and there exist efficient algo-
rithms to calculate shortest traces, which lead to a certain state or contain a certain
event [12]. But the decidability of the reachability problem of the labeled transition sys-
tem depends heavily on its design. In [3] it is proved, that the reachability problem for
communicating finite state machines which communicate by means of unbounded FIFO
buffers is undecidable. Subsequently, the reachability problem for a labeled transition
system which represents asynchronously communicating processes (i.e. the base model of
SDL) is undecidable.

Our way to search for observables with the required properties is to simulate the labeled
transition system and the finite automaton in parallel (i.e. a kind of ‘on the fly validation’
[15]). There are different search methods, like depth search and breadth search. Breadth
search is not usable, since it is impossible to store all states!?. Also depth search is not
applicable, since it is not possible to guarantee termination. As a consequence we use a
k-bounded depth search which evaluates all possible traces of length k. If no trace with
required properties is found, then the search may be repeated with a higher bound or
stopped without results.

The procedure of generating test cases. The procedure of generating a test case
based on an SDL description and an MSC can be structured in four steps:

%Note, a state represents a global state of the SDL system, i.e. the control states of the processes, the
contents of the queues and the values of the variables.

12

e Step 1: In a k-bounded depth search with increasing bound k possible pass observ-
ables are calculated.

e Step 2: Based on the possible pass observables we calculate the unique pass observ-
ables. If there are no unique pass observables we go back to step 1.

e Step 3: We choose a subset of the shortest unique pass observables, which are
alternative to each other. These are the pass observables of our test case. Based on
the pass observables we calculate the corresponding inconclusive observables.

e Step 4: The pass observables and the inconclusive observables have to be trans-
formed into TTCN. Furthermore, the fail observables have to be added by means of
a TTCN default behavior description.

Further information on the project and a complete example for our approach can be found

in [8] and [9].

Summary and Outlook

The presented paper deals with the automatic generation of test cases for temporal prop-
erties. Temporal properties are classified by means of the Borel Hierarchy. The safety and
the guarantee property are identified to be testable temporal properties. For the testable
temporal properties a test case definition is given. The test case definition is applied to
practical testing by relating the safety property to an SDI description and by relating an
MSC to a guarantee property. Our approach is implemented at the University of Berne
and its applicability for real systems will be proven within a following case study.

References

[1] B. Alpern and F.B. Schneider. Recognizing Safety and Liveness. Distributed Com-
puting, 2:117-126, 1987.

[2] Ferenc Belina, Dieter Hogrefe, and Sarma Amardeo. SDIL with Applications from
Protocol Specification. Prentice Hall International, 1991.

[3] Daniel Brand and Pitro Zafiropulo. On Communicating Finite State Machines. Jour-
nal of the Association for Computing Machinery, 30(2):323-342, April 1983.

[4] SG X CCITT. Recommendation 7.100: Specification and Description Language
(SDL), 1992. Geneva.

[5] SG X CCITT. Recommendation 7.120: Message Sequence Chart (MSC), 1992.
Geneva.

[6] Jens Grabowski, Peter Graubmann, and Ekkart Rudolph. The Standardisation of
Message Sequence Charts. Proceedings of the IEEE Software Engineering Standards
Symposium 1993.

13

[7] Jens Grabowski, Dieter Hogrefe, Peter Ladkin, Stefan Leue, and Robert Nahm. Con-
formance Testing - A Tool for the Generation of Test Cases. Interim Report of the F
& E project contract no. 233, funded by Swiss PTT, 1992.

[8] Jens Grabowski, Dieter Hogrefe, and Robert Nahm. A Method for the Generation of
Test Cases Based on SDL and MSCs. Technical Report TAM 93-010, University of
Berne, Switzerland,1993.

[9] Jens Grabowski, Dieter Hogrefe, and Robert Nahm. Test Case Generation with Test
Purpose Specification by MSCs. Proceedings of the 6th SDL Forum, North-Holland,
1993.

[10] Dieter Hogrefe. Automatic Generation of Test Cases from SDL-Specifications. SDL-
Newsletters, 12, 1988.

[11] Gerard J. Holzman. Design and Validation of Computer Protocols. Prentice-Hall
International, Inc., 1991.

[12] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison Wesley, 1979.

[13] ISO/IEC JTC 1/SC 21 N. Information Technology - Open System Interconnection -
Conformance Testing Methodology and Framework - Part1-5. International Standard

9646, 1SO/TEC, 1991.

[14] M. Kaminski. A Classification of w-regular Languages. Theoretical Computer Science,
36:217-229, 1985.

[15] Giinther Karjoth. Generating Transition Graphs from LOTOS Specifications. In
Michel Diaz and Roland Groz, editors, FORTE’92, pages 275287, October 1992.

[16] Zohar Manna and Amir Pnueli. A Hierarchy of Temporal Properties. Proceedings
of the 9th Annual ACM Symposium on Principles of Distributed Computing, pages
377-408. ACM Press, 1990. 1990 ACM-0-89791-404-X/90/0008/3777.

[17] Robert Nahm. Semantics of Simple SDL. Proceedings of the GI/ITG workschop on
formal description techniques for distributed systems in Magdeburg (Germany), 1993.

14

A Mathematical notation
Set of sequences. Let A be an arbitrary set, then we define the following three sets

e A* are the finite sequences over A,
o AY are the infinite sequences over A and

o A® = A" U A" are the finite and infinite sequences.

Operations on sequences. Let S C A® t u,v € A® and a,b,¢,d,aq,...,a, € A
e () is the empty sequence,
e (ag,...,a,) is the finite sequence consisting of the elements aq, ..., a,,

e ¢-u denotes the concatenation of ¢ and u (Note, if ¢ is infinite the ¢ - u = 1),

t C utis a strict prefix of «” holds, iff Jv # () : t-v = u,
e t C u”tis a prefix of w” holds, iff v :t-v = u,
e #t denotes the length of ¢ (Note, if ¢ is infinite then #¢ = 00),

e a(©Ot denotes the filtered trace of £, which contains only the element a,
e.g. a0 < a,b,a,c >=< a,a >. As a generalisation of this filter operation, the first
operand may also be a set,

o f:A— A’ can be canonically extended to sequences, by
f(<ag,...;an,...>)=< flag),..., fla,),...>,

o f:A® — A’ can be canonically extended to sets of sequences by

f05) =11 [te S},

o preflS)={t|3Ju€ S :tLC u},is the set of prefixes of 5,
o S={tcS|-JueS:tC u} are the maximal sequences and
e S={teS|VueS:#t<H#u} are the shortest sequences.

15

