
A Method for the Generationof Test Cases Based on SDL and MSCsJens Grabowski Dieter Hogrefe Robert NahmInstitut f�ur Informatik, Universit�at BernL�anggassstr. 51, CH-3012 Bern
IAM-93-010April 1993

Abstract1Within this paper a method for the generation of test cases for conformance tests ispresented. The method is based on a formal speci�cation written in CCITT SDL [CCI92b]and on Message Sequence Charts (MSCs) [CCI92a]. It assumes that the purpose of atest case is given by at least one MSC. Although SDL was chosen as formal descriptiontechnique and MSCs were chosen to express test purposes, in principle, the presentedmethod should work for any formal speci�cation which can be represented as labeledtransition system and for any test purpose which can be described by a �nite automaton.
CR Categories and Subject Descriptors: C.2.0 [Computer-Communication Net-works]: General; C.2.2 [Computer-Communication Networks]: Network Protocols; D.2.5[Software Engineering]: Testing and Debugging1This work is performed within the F & E project, no. 233, 'Conformance Testing { A Tool for theGeneration of Test Cases', funded by Swiss PTT.

1 IntroductionFormal description techniques (FDTs, i.e. LOTOS, Estelle, or SDL) frequently are usedwithin industry and standardization bodies to describe the functional properties of commu-nication systems (e.g. OSI or ISDN). FDT descriptions can be simulated and the possibleinteractions between a system and its environment can be generated automatically. Al-though test cases describe such interactions the automatic generation of test cases fromFDT descriptions is still an open problem. The basic problems deal with the questions:How long is a test case? What is the test verdict (e.g. PASS, or FAIL)? and What canbe concluded from a test verdict? Furthermore, there exists a gap between research andpractical testing.Research: Approaches coming from research like UIO [Wez90] or theW-method [Cho78]can handle systems with a small state space. They test every state transition exactly onetime. Therefore, the length of the test cases is determined and the test verdicts arePASS and FAIL. From a PASS verdict a behavioural equivalence between speci�cationand implementation can be concluded. The problems of these methods are state explosionand in�nite state spaces.State explosion occurs because of exponential relations between a speci�cation and itsstate space. This means for example that the state space exponentially grows with thenumber of processes, or with the size of bu�ers. Even small examples cause problems forUIO or the W-method.None of the mentioned methods can be applied to systems with an in�nite state space.Unfortunately, FDTs force the description of systems with an in�nite state space. In�nitesignal queues of SDL processes or unlimited data descriptions are two examples for this.However, there can not exist test methods which guarantee behavioural equivalence forsystems with an in�nite state space. Even �nite state machines which communicate bymeans of unbounded FIFO bu�ers (i.e. the base model of SDL) are as powerful as TuringMachines [BZ83] for which the behavioural equivalence is undecidable [HU79]. For testingthe situation is more complicated since there is in general no knowledge about the wholeimplementation. Only the interactions between an implementation and its environmentare observed for a certain time. One solution is to guarantee a �nite state space by givingstatic restrictions to the speci�cation. But such restrictions often are also undecidable andthey do not prevent state explosion [Fin88].Practical Testing: Real systems are very complex and approaches like UIO or the W-method can not applied. The present procedure of writing test cases is an intuitive andcreative process which only is restricted by informal regulations. The intuition behind atest case is re
ected by the so-called test purpose. A test purpose denotes an importantpart of a speci�cation which should be tested. The meaning of the term important part ofa speci�cation often is a philosophical problem. Some people argue that one has to selecttest cases which check the normal behaviour of a system (e.g. correct data transmission),since this re
ects the main purpose of a system. Other people think that one has to testthe critical parts of a speci�cation (e.g. error handling), since in general the normal caseshave been tested thoroughly by the implementors.1

Medium

Initiator

User User
Initiator Responder

ResponderFigure 1: Architecture of the Inres protocolOur approach: Our approach does not solve the mentioned philosophical problem butit supports practical testing. It combines test purposes de�ned by Message SequenceCharts (MSCs) [CCI92a, GR92] and a corresponding SDL description [CCI92b] in orderto generate test cases.MSCs (cf. Figure 2) are a widespread means for the graphical visualisation of selectedsystem runs of communication systems [GGR]. A test purpose can be de�ned by an MSCin form of the required signal exchange2. An MSC does not de�ne a complete test case. Itdoes not describe the signal exchange which drives the implementation into a state fromwhich the MSC can be performed (preamble). It does not de�ne the stimuli which arenecessary to drive the implementation back into an initial state after the MSC is observed(postamble). It does not de�ne what to do if a signal is observed which is not de�ned in theMSC, and it does not describe the values of message parameters. The missing informationcan be provided by an additional FDT description. We choose SDL as FDT because SDLis more used within industry and standardization bodies (e.g. CCITT, ISO/IEC, or ETSI)than any other standardized FDT [Hog91a].The rest of the paper is organized in the following way. In chapter 2 the basic ideasof our approach are presented by means of an example. We formalize our approach byrelating the traces of an SDL description and an MSC. For generating the required tracesSDL descriptions are interpreted as labeled transition systems and MSCs are interpretedas �nite automatons. The models for this formalization are de�ned within chapter 3 andthe test case generation is explained in chapter 4. In chapter 5 a tool is presented whichimplements the described method. Finally, a summary and an outlook are given.2 The basic ideasIn the following the basic ideas for using MSCs together with SDL descriptions as thebasis for test case generation are illustrated by means of an example which is taken fromthe behaviour of the Inres protocol [Hog91b].2It should be noted that some test purposes (e.g. time constraints, or reliability requirements) cannot be expressed by MSCs. But the use of MSCs for describing the class of test purposes which can beexpressed seems to be common industrial practice. Therefore, we concentrate on MSCs.2

2.1 Structure and behaviour of the Inres protocolIn the sequel the Inres protocol is brie
y introduced. The architecture of the Inres pro-tocol is shown in Figure 1. The Inres protocol renders a connection-oriented service fordata transmission. It uses a connectionless service. Data are transported from an Initia-tor entity to a Responder entity. The used service is called Medium service. Messagesexchanged between Initiator, Initiator User, Responder, Responder User and Medium arecalled service primitives (SPs) and the information units exchanged between Initiator andResponder are called protocol data units (PDUs).The Inres protocol works in three phases: connection establishment, data transfer anddisconnection (cf. Figure 2). For a connection establishment the Initiator gets a connectionrequest CONreq from its user, then sends a CR to the Responder and waits for a connectioncon�rmation CC in return. After receiving CC the Initiator gives a CONconf to its userand the connection is established. If a CC does not arrive within some time limit, theInitiator will retransmit CR for three times. Afterwards, the Initiator indicates the failedconnection establishment by a DISind.When the Responder receives a CR from the Initiator it gives a connection indicationCONind to its user and waits for a response CONresp in return. Upon arrival of CONresp,the Responder sends a CC to the Initiator and waits for a �rst data package DT.After connection establishment data can be transferred. The Initiator User gives adata request DATreq to the Initiator, which then sends a DT to the Responder and thenwaits for an acknowledgement AK. If the AK does not arrive within some time limit theInitiator retransmits the DT for three times. Afterwards, the Initiator assumes that theconnection is distroyed and indicates this by giving a DISind to its user. If the AK arrivesin time, the next data package, if present, is sent. When the Responder gets a DT formthe Initiator, it acknowledges the DT with an AK and gives a data indication DATind toits user. Afterwards the Responder waits for the next DT.A disconnection can be initiated by a DISreq from the Responder User. Upon arrival ofa DISreq the Responder sends a DR to the Initiator which then indicates the disconnectionby an DISind to its user.Initiator and Responder have to use the Medium service for their communication. TheMedium service can be accessed by a data request MDATreq for transmission and by adata indication MDATind for reception. The PDUs CR, CC, AK, DT and DR can beconsidered as being parameters of MDATreq and MDATind. The MSC in Figure 2 shows acomplete system run including connection establishment, data transfer and disconnection.2.2 Testing the retransmission of the InitiatorA suitable test architecture for testing the Initiator entity of the Inres protocol mightbe the distributed test method [ISO91a] as sketched in Figure 3. The architecture ofthe Inres protocol (cf. Figure 1) can be adjusted to the distributed test method. TheResponder is replaced by the lower tester (LT) and the upper tester (UT)3 plays the roleof the Initiator User. It is assumed that the test architecture is an SDL description whichcan be derived from the system speci�cation. LT and UT are modeled as SDL processes3UT and LT communicate via so-called points of control and observation (PCOs) with the IUT. Forsimpli�cation the PCOs are not mentioned within the test case descriptions (e.g. Figure 4 and 5), but itis assumed that each tester serves its own PCO. 3

DISreqMDATreq(DR)MDATind(DR)DISind

Initiator_User Initiator Medium Responder

MDATreq(CR) MDATind(CR) CONindCONreq

CONrespMDATreq(CC)MDATind(CC)CONconf

DATreq MDATreq(DT) MDATind(DT) DATind

MDATind(AK) MDATreq(AK)

Responder_User

Connection Establishment

Data Transfer

DisconnectionFigure 2: Complete system run of the Inres protocol
Medium

IUT

UT
LT

PCO1

PCO2Figure 3: Distributed test methodwhich can send and receive any valid signal at any time4. A similar approach is used in[BRP89]. The system under test (SUT) consists of an Initiator implementation which isthe implementation under test (IUT) and a Medium implementation which is assumed towork correct.We want to concentrate on testing a part of the retransmission property. In particular,we want to test whether it is possible to perform a correct connection establishment afterthe third retransmission of the CR.The MSC in Figure 4 shows a scenario which one may think about in the context oftesting the retransmission property. The UT initiates a connection by CONreq. The LTwaits for three CRs before it answers with CC which will then in return result in CONconfat the UT. Since the MSC in Figure 4 does not claim to de�ne the entire scenario, it cannotassumed that MSCs provides complete test information.2.3 The meaning and the representation of test casesThe method presented in this paper is based on the assumption that an MSC de�nes aspeci�c part of a test case, the so-called test purpose. For explaining this the meaning ofthe terms trace, observable and test case has to be introduced, and the representation oftest cases has to be described.4For systems with a synchronous communication mechanism exists a simpler approach to de�ne thebehaviour of the tester. The inputs and outputs of the system which can be observed by its environmentare inverted. Inputs become outputs and vice versa. Brinksma [Bri87] uses this technique to de�ne thecanonical tester. 4

Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATreq(CC)MDATind(CC)CONconf

MDATind(CR)

MDATind(CR)

UT LT

Figure 4: Connection establishment after the third retransmission of CRTraces and observables: A trace describes the ordering of events which are performedduring a system run. A trace of an SDL description may include the events tasks, inputs,outputs, saves, etc. of its processes. An MSC is a possible representation of an SDL trace.For testing only inputs and outputs of LT and UT are interesting5. Therefore, we call atrace which only includes inputs and outputs of LT and UT an observable.An informal de�nition of test cases: A test case is de�ned in order to prove a speci�ctest purpose. A test purpose might be a set of events which have to be performed, or a setof states which have to be reached by the IUT. A test case describes a set of observables.Each observable leads to a test verdict.The test verdicts are PASS, INCONCLUSIVE and FAIL. PASS is given when thetest purpose is reached, FAIL is assigned when the SUT behaves in an incorrect way andINCONCLUSIVE is given if neither FAIL nor PASS can be assigned.A test case can be structured into three parts which are called preamble, testbodyand postamble. The testbody describes observables which indicate that the IUT behavesaccording to the test purpose. The preamble drives the IUT from an initial state intoa state from which the testbody can be performed. The postamble checks whether thetestbody ends up in the correct state after it has been performed and drives the IUT backinto an initial state from which the next test case can be applied.The representation of test cases: Test cases for conformance tests are usually rep-resented by the Tree and Tabular Combined Notation (TTCN) which is standardized bythe ISO/IEC [ISO91b]. A TTCN test case for an Initiator implementation of the Inresprotocol may look like the table in Figure 5. TTCN describes observables by means of atree notation (cf. Behaviour Description in Figure 5).The tree structure is determined by the ordering and the indent of the events. Ingeneral, the same indent denotes a branching (i.e. alternative events, e.g. lines Nr. 2 andNr. 15 in Figure 5) and the next larger indent denotes a succeeding event (e.g. lines Nr. 1and Nr. 2 in Figure 5).Events are characterized by the involved instance (i.e. LT or UT), by its kind (i.e. "!"denotes an output, "?" describes an input) and by the SP which has to be send or received.5It should be noted that SUT, LT and UT in general exchange SPs.5

Detailed Comments :

Test Case Name :
Group :
Purpose :
Default :
Comments :

1
2
3
4
5

Test_Case_1
Inres_Protocol/Initiator_Test/Connection_Establishment

(PASS)

LT?MDATind(CR)
LT?MDATind(CR)

LT?MDATind(CR)
LT!MDATreq(CC)

LT!MDATreq(DR)

INCONC

6
7
8
9
10
11
12
13
14
15

LT?MDATind(CR)
LT?MDATind(CR)

INCONC
INCONC

INCONC
INCONC
INCONC

INCONC

Unexpected_Events
Connection Establishment after the third retransmission of a Connection Request

UT!CONreq

UT?CONconf

UT?DISind

UT?DISind
UT?DISind

UT?DISind
UT?DISind

Label Behaviour Desription Comments

Test Case Dynamic Behaviour

Nr. VerdictConstraint Ref.

LT?MDATind(CR)Figure 5: TTCN test case for the Inres protocolAn example may clarify the notation. The statement UT!CONreq (cf. line Nr. 1 in Figure5) describes the sending of CONreq to the SUT by the UT. TTCN allows to specifyevents with arbitrary SPs by using the OTHERWISE statement (e.g. UT?OTHERWISEin Figure 6).Test verdicts are de�ned within a verdict column of the TTCN table. The verdictcolumn of Figure 5 only includes PASS and INCONCLUSIVE verdicts. In this exampleFAIL behaviour is speci�ed by a default behaviour description which is shown in Figure6. Such defaults have to be referenced in the test case header (cf. Default in Figure 5).TTCN o�ers much more facilities like Constraints, Labels or Timer which are notrelevant for the understanding of this paper. A tutorial on TTCN can be found in [KW91].
Detailed Comments :

1
2

Label Behaviour Desription Comments

UT?OTHERWISE
LT?OTHERWISE

FAIL
FAIL

Group :

Default Dynamic Behaviour

Test Step Name : Unexpected Events
Inres_Protocol/Initiator_Test/Connection_Establishment

Objective : Handle unexpected Signals
Comments :

VerdictNr. Constraint Ref.Figure 6: Default behaviour for the TTCN test case in Figure 56

The role of MSCs and FDT descriptions for test case generation: Up to now,the complete FDT speci�cation of a protocol hasn't been considered but will have to befor the following reason. It is assumed that an MSC de�nes the test purpose of a test case.This means that an MSC de�nes a signal exchange which have to be performed by theSUT to get a PASS6. An MSC does not describe� the pre- and the postamble of the test case,� responses of the SUT which lead to a FAIL or an INCONCLUSIVE, and� the parameter values of the signals which are exchanged.In order to generate complete test cases the missing information has to be added.Therefore, an additional FDT description of the test architecture is necessary.2.4 The observables of a test caseA test case consists of a set of observables. According to the test verdicts we distinguishbetween observables which lead to a PASS, observables which lead to an INCONCLUSIVEand observables which lead to a FAIL.Possible pass observables: For generating a test case an observable has to be foundwhich drives the SUT from an initial state back to an initial state, whereby the signalexchange de�ned within the MSC has to be performed without interrupts. We call anobservable which ful�ls these criteria a possible pass observable7.The observables which drive the SUT from an initial state to a state from which theMSC is applicable can be interpreted as the preamble of the test case and the observableswhich drive the SUT back into an initial state after the MSC has been applied can beinterpreted as postamble.We explain this by means of our test case example. The connection establishment ofthe Inres protocol starts in an initial state. Therefore, no preamble has to be added andour test case starts with the observable de�ned by the MSC in Figure 4. The MSC endsin a state where the connection is established and data can be transferred. A possiblepostamble is a normal disconnection which starts with the sending of MDATreq(DR) bythe LT and ends with the reception of a DISind by the UT. The MSC in Figure 7 showsthe MSC in Figure 4 enhanced by the disconnection. The TTCN description in Figure 5describes the observable which is de�ned by the MSC in Figure 7 within the lines Nr. 1 toNr. 8. These lines also describe the possible pass observable of this example. The sketchedpostamble is speci�ed within the lines Nr. 7 and Nr. 8.Inconclusive observables: If possible pass observables were found, observables whichlead to an INCONCLUSIVE have to be generated. We call them inconclusive observables.An inconclusive observable has the same pre�x as a possible pass observable but its lastevent is a response of the SUT which leads neither to a PASS nor to a FAIL. In our example6From a theoretical point of view an MSC can be interpreted as a liveness property of the FDT descrip-tion. It must be observable within a system run which leads from an initial state back to an initial stateof the FDT description.7In general there may exist more than one possible pass observable for a test case.7

Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATreq(CC)MDATind(CC)CONconf

MDATind(CR)

MDATind(CR)

MDATreq(DR)MDATind(DR)DISind

UT LT

Figure 7: MSC of Figure 7 with a possible postambleinterrupts of the connection establishment by DISind lead to an INCONCLUSIVE. WithinFigure 5 these cases are shown in the lines Nr. 9 to Nr. 15.Fail observables: FAIL observables are added to the TTCN test case description bymeans of the OTHERWISE event and a default behaviour description (cf. section 2.3 andFigure 6).Possible and unique pass observables: The possible pass observable of the TTCNtest case in Figure 5 is shown in the lines Nr. 1 to Nr. 8. But this observable does notensure that the MSC has been performed during a test run. After the reception of DISind atest verdict is assigned and the test case is �nished. But according to the SDL descriptionof the Inres protocol a fourth MDATind(CR) may be on the way. In this case the MSCin Figure 8 would be performed.Such problems arise because the SUT is treated as a black box and therefore, LT andUT only have an incomplete system view. For the tester the SUT behaves in an indeter-ministic way. In our example the indeterminism is caused by the asynchronous commu-nication mechanism of SDL. Without seeing all input and output events of Initiator andMedium, we can not make any assumption about an ordering, or a time relation betweenthe DISind and a possible fourth MDATind(CR). However, if a fourth MDATind(CR)arrives, the PASS in Figure 5 has to be overwritten by an INCONCLUSIVE.The LT does not know how long it should wait for a fourth MDATind(CR) after thereception of the DISind by the UT and before the assignment of a PASS. Therefore, a testrun according to Figure 7 cannot be distinguished from test runs according to Figure 8 inall cases. A new postamble has to be found.A correct postamble of our example is shown within Figure 9. Instead of MDA-Treq(CR), a data package DATreq8 is transferred, but the reception by the LT is notacknowledged. The Initiator retransmits the data package DT three times, indicates af-terwards the disconnection and goes back into a disconnected state. The FIFO property8Data is transported as a parameter of DATreq. Since this parameter does not in
uence the behaviourof the Inres protocol it is omitted. 8

MDATreq(CC)MDATind(CC)CONconf

Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

MDATreq(CR) MDATind(CR)

MDATreq(DR)MDATind(DR)DISind

UT LT

Figure 8: MSC describing a not expected system runof queues and channels in SDL ensures that after the reception of the �rst MDATind(DT)no fourth MDATind(CR) can be received. Thus, the reception of the DISind allows aunique assignment of a PASS.We call a possible pass observable which uniquely ensures that the given MSC wasperformed a unique pass observable. The complete and correct TTCN test case whichensures that the test purpose given in Figure 4 was performed is shown in Figure 10. Theunique pass observable of this example is described in the lines Nr. 1 to Nr. 12.3 A formal interpretation of SDL, MSCs and TTCNIn the previous section the basic ideas of the presented approach are discussed on aninformal level. The central terms of the argumentation are trace and observable. Insection 2 we only provide a more or less intuitive relation between the traces described byMSCs, SDL descriptions and TTCN. From an abstract point of view our method comparesSDL and MSC traces and writes down certain traces with speci�c properties in TTCNnotation.To explain the test case generation formally we have to �nd a common representationfor traces and observables of SDL, MSC and TTCN. Moreover, a mathematical modelto generate traces for a speci�c SDL or MSC description is needed (see section 3.1).Furthermore, SDL, MSCs and TTCN have to be related to the chosen trace representationand to the mathematical model (section 3.2, 3.3 and 3.4). The used notation is explainedin the appendix.3.1 Trace representations and mathematical modelsCommunication systems are composed of several processes, which exchange signals andexecute their statements independently and parallel. There are several possibilities torepresent traces of such systems. They di�er in the following points:9

MDATreq(CC)MDATind(CC)CONconf

MDATreq(DT) MDATind(DT)

MDATreq(DT) MDATind(DT)

DISind

Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

DATreq MDATreq(DT) MDATind(DT)

MDATreq(DT) MDATind(DT)

UT LT

Figure 9: MSC of Figure 4 with a correct postamble

Detailed Comments :

Test Case Name :
Group :
Purpose :
Default :
Comments :

1
2
3
4
5

Inres_Protocol/Initiator_Test/Connection_Establishment
Connection Establishment

6
7
8
9
10
11
12
13
14
15
16
17
18

Test_Case_3

LT?MDATind(CR)
LT?MDATind(CR)

LT?MDATind(CR)
LT!MDATreq(CC)

PASS

LT?MDATind(DT)
LT?MDATind(DT)

LT?MDATind(DT)
LT?MDATind(DT)

LT?MDATind(CR) INCONC
LT?MDATind(CR) INCONC

INCONC
INCONC
INCONC
INCONC

UT!CONreq

UT?CONconf
UT!DATreq

UT?DISind

UT?DISind
UT?DISind

UT?DISind
UT?DISind

Unexpected Events

Label Behaviour Desription Comments

Test Case Dynamic Behaviour

VerdictNr. Constraint Ref.

Figure 10: TTCN test case description which ensures the test purpose of Figure 410

� States versus eventsA trace can be a sequence of states or a sequence of events. The relation betweenthese approaches is, that an event is a transition between two states and a statecan be interpreted as a sequence of events. For the generation of test cases onlysequences of events are relevant. Therefore, in the sequel we only consider events.� Partial order representation versus interleaving representationIn the partial order representation, a trace is a partially ordered set of events. Inthe interleaving representation a trace is a sequence of events. The relation betweenthese representations is, that a partially ordered set of events can be described by aset of sequences, where every sequence is compatible with the partial order.� Linear time representation versus branching time representationIn the linear time representation traces are described as a set of sequences. In thebranching time representation a set of traces is described as a tree. The relationbetween these representations is, that every path in the tree is an element of the set.� Di�erent notions of atomicityUsually an event is atomic. But also certain sequences of events can be atomic.Atomicity means, that atomic sequences of events can not in
uence and can not bein
uenced from parallel executed atomic sequences of events.Figure 11 classi�es SDL, MSC, TTCN and Automata theory according to the usedtrace representation.1. In SDL a trace can be de�ned as a sequence of events, where a sequence of events,which leads from one SDL state to the next SDL state is atomic. Furthermore, alinear time representation can be used.2. An MSC describes a partially ordered set of events. Every event is atomic and alinear time representation is used.3. TTCN describe traces by trees. Every node of the tree is an event and the eventsare atomic.4. Automata theory [HU79] is a mathematical model, which works with sequences ofatomic events. Furthermore, a linear time representation is used.Our approach. In order to relate the traces of SDL descriptions, MSCs and TTCN wechoose an automata theoretic approach and represent traces as sequences of atomic events.There are several reasons, why we choose automata theory as mathematical model.� The trace representation of automata theory does not �x to the trace representationof MSCs, SDL and TTCN, but there are only a few changes necessary to adapt it.For MSCs the partial order has to be translated to a set of sequences. For SDL theatomicity has to be adapted and for TTCN the tree has to be translated into a setof sequences. 11

Time
Branching Linear

Time
Branching

Time
Linear
Time

atomic

events

atomic

sequences

of events

Partial order Interleaving

AutomataMSC
Theory

SDL

TTCNFigure 11: Classi�cation of trace representation� Automata theory is a well founded mathematical model, which provides a largenumber of useful theorems, e.g. theorems about decidability.� Automata are easy to implement and therefore suitable for generating traces.3.2 Speci�cation and Description Language (SDL)An SDL speci�cation can be modeled by a labeled transition system, which can be inter-preted as an automaton, where all states are end states. There are di�erent methods toderive a labeled transition system from an SDL speci�cation. One method is described in[Nah93].Labeled transition system. A labeled transition system is a tuple LTS = (Q;E;R; q0),where� Q is a set of states,� E is a set of labels resp. events,� R � Q� E �Q is a transition relation and� q0 2 Q is the initial state.Relation between an SDL speci�cation and a labeled transition system. In-tuitively Q denotes the global system states, which are determined by the control stateof the processes, the content of the signal queues and the values of the variables. Thestate q0 is the initial state of the SDL speci�cation. The transition relation R determinesfor every state q 2 Q and for every event e 2 E the corresponding next global state ofthe SDL system. The events9 E are determined by E = f�g [([ni=1(Ii [Oi)). � is aninternal event and Ii and Oi are the inputs and outputs of the i-th process. The inputsand outputs are also called communication events .9SDL processes perform transitions from one SDL state to the following SDL state. Every transitionconsists of a sequence of actions e.g. input, output, task, or decision. We consider actions as events of thelabeled transition system. 12

Observable events. Since SUT, UT and LT are speci�ed in one SDL description andsince a test case only includes the communication events of UT and LT, we de�ne� OI = IUT [ILT to be the observable inputs,� OO = OUT [OLT to be the observable outputs and� OE = OI [OO to be the observable events.Traces and observables of a labeled transition system. A trace is a sequence ofevents and an observable is a sequence of observable events. We de�ne the traces of alabeled transition system LTS = (Q;E;R; q0) from a state in M � Q to a state in N � Qby: Tr(LTS;M;N) = fhe0; : : : ; eni 2 E� j9hs0; : : : ; sn+1i 2 Q� : (s0 2M ^ sn+1 2 N ^ 8i 2 0 : : :n : (si; ei; si+1) 2 R)gWe de�ne the observables of a labeled transition system LTS from a state in M � Q to astate in N � Q by: Ob(LTS;M;N) = OE c
Tr(LTS;M;N)The traces of a labeled transition system LTS with an observable o are:Tr(LTS; o) = ft 2 Tr(LTS; fq0g; Q) j o = OE c
tg3.3 Message Sequence Chart (MSC)An MSC describes a partially ordered set of events. It can be interpreted as a �niteautomaton. The automaton accepts traces, which contain the communication events ofthe MSC and which are compatible with its partial order.Finite automaton. A �nite automaton is de�ned by a tuple FA = (S;E; �; s0; F), where� S is a �nite set of states,� E is a set of events,� � � S �E � S is a transition relation,� s0 2 S is the initial state and� F � S is a set of �nal states.Traces and observables of a �nite automaton. A �nite automaton FA = (S;E; �; s0;F) can be interpreted as a labeled transition system (S;E; �; s0). Thus, the traces andobservables of a �nite automaton are de�ned by the traces and observables of the corre-sponding labeled transition system. 13

Relation between an MSC and a �nite automaton. The relation of the MSC andthe �nite automaton is explained in two steps by means of the example in Figure 12. Theautomaton described in the �rst step accepts exactly the sequences of events, which arede�ned by the partial order of the MSC (cf. Figure 12b). In a second step we extend the�nite automaton by additional events (cf. Figure 12c).� Step 1: The Automaton 1 in Figure 12 accepts exactly the sequences of events,which are compatible with the partial order of the MSC MSC 1. One way for thetranslation of an MSC into a �nite automaton is described in [GHL+92]. MSC 1consists of two instances P1 and P2, which exchange the signal CR two times. Itdescribes a partial ordered set of communication events, which allows the traces<P1!CR,P1!CR,P2?CR,P2?CR> and <P1!CR,P2?CR,P1!CR,P2?CR>. Automaton 1 ac-cepts these traces by transiting from the initial state s0 to the �nal state f .� Step 2: An MSC describes a part of the signal exchange of an SDL run by apartially ordered set of events. Our approach compares traces of a �nite automatonrepresenting an MSC and traces of a labeled transition system representing an SDLdescription. In order to do this, the �nite automaton must also be able to acceptevents of the labeled transition system, which are not explicitly mentioned by theMSC.For this aim the �nite automaton is extended by Null transitions, which consumearbitrary events of the labeled transition system without changing the state. For thetest case generation we require, that the signal exchange of the MSC is performedwithout interrupts, i.e. between two communication events on an instance axis thecorresponding process is not allowed to perform further communication events10.To ensure this, for some states the Null transitions are restricted by certain events,which should not cause a Null transition.The example in Figure 12 may clarify the extension. Automaton 2 is gained fromthe Automaton 1 by introducing Null transitions for every state. Since we do notallow further communication events of an instance i between two communicationevents on its instance axis, we disallow its outputs Oi and its inputs Ii for somestates. E.g. in state s1 the instance P1 has already performed the communicationevent P1!CR and should perform the communication event P1!CR. Therefore, instate s1 we exclude the outputs O1 and inputs I1 of the instance P1 from the Nulltransitions. This fact is stated by the arrow inscription E�I1�O1. In same mannerthe Null transitions of state s2, s3 and s4 are constructed. In the start state s0 andin the �nal state f all possible communication events E are valid. These are eventsof the preamble and postamble.3.4 Tree and Tabular Combined Notation (TTCN)A test case in TTCN describes a tree, where the nodes are observable events. We expressa tree as a set of observables. The observables of a test case can be grouped into threedisjoint sets - the observables, which cause a PASS , a FAIL or an INCONCLUSIVEverdict. We call them pass, fail and inconclusive observables.10This restriction may be weakened to allow optional signals or abstractions in the MSC description.14

s0

f

s1

s2 s3

s4

P2?CR

P1!CR

P2?CR

P1!CR

P2?CR

P1!CR

E

E

E-I1-O1

E-I1-I2-O1-O2

E-I2-O2

E

s0

f

s1

s2 s3

s4

P2?CR

P1!CR

P2?CR

P1!CR

P1!CR

P2?CR

P1 P2

CR

CR

Automaton 2Automaton 1MSC 1(a) (b) (c)Figure 12: MSC and corresponding �nite automataDe�nition. A test case is de�ned by a triple TC = (Pass;Fail; Inco), where� Pass � OE� are pass observables,� Fail � OE� are fail observables and� Inco � OE� are inconclusive observablesConstraints. There are restrictions on the set of observables of a test case.� A test verdict must be unique. There is no observable, which cause two verdicts atonce. Formally, this is expressed by:Pass;Fail; Inco are pairwise disjoint� After deriving a test verdict, it is assumed, that the test case is �nished and couldnot be continued. This can be expressed by:8v; w 2 Pass[Fail[Inco : v 6< w� The tree of a test case can not have arbitrary branching. UT and LT perform asequence of �xed outputs, and afterwards they have to wait for the reaction of theSUT. Then UT and LT again can perform a sequence of �xed outputs. This meansfor outputs a test case has a branching of size 1 and for inputs a test case canhave arbitrary branching. We express that by the notion of alternative observables.Formally, this is expressed by8v; w 2 Pass [Fail[Inco : v altto wWe introduce two notations of alternative observables.15

� An observable v is alternative to an observable w, if they have a pre�x p in commonand the �rst elements, in which they di�er is an input. Formally, this is denoted byv altto w i�9p; v0; w0 2 OE�; a; b 2 OI : v = p � a � v0 ^ w = p � b � w0 ^ a 6= b� An observable v is minimal alternative to an observable w, if v is an alternative to wand v is only one element longer than the common pre�x. Formally, this is denotedby v altto w i�9p; w0 2 OE�; a; b 2 OI : v = p � a ^ w = p � b � w0 ^ a 6= bTest verdicts for a test case. An implementation I is driven according to the test caseTC = (Pass;Fail; Inco) and performs the observable w. Whether an observable proves thetest purpose is de�ned by the test verdict verdict(w; TC). We give a PASS, if a pre�x ofw is a pass observable, we give a FAIL, if a pre�x of w is a fail observable and we givean INCONCLUSIVE, if a pre�x of w is an inconclusive observable or the implementationdoes not respond during test time and w is a pre�x of a pass observable. Formally the testverdict is de�ned by verdict(w; TC) =� PASS i� 9v 2 Pass : v v w� FAIL i� 9v 2 Fail : v v w� INCONCLUSIVE i� (9v 2 Inco : v v w) _ (9v 2 Pass : w < v)4 Formalizing the test case generationNow we know that a TTCN test case consists of three disjoint sets of observables and eachset corresponds to a test verdict. In this section we de�ne the relation between observables,representing a test case, a labeled transition system representing an SDL description anda �nite automaton representing an MSC.4.1 Informal relation between SDL descriptions, MSCs and test casesAn implementation gets a PASS verdict, if we can assume, that it performs a trace fromits initial state to its initial state and executes the communication events of the MSC.It gets an INCONCLUSIVE verdict, if the performed observable is speci�ed by the SDLdescription but the communication events of the MSC are not performed or the initialstate is not reached again. Finally, it gets a FAIL verdict, if it presents an observable,which is not speci�ed by the SDL description. This means, that we are calculating threesets of observables - the pass, fail and inconclusive observables.� A pass observable is an observable, from which we can conclude, that the labeledtransition system representing the SDL description performs a cycle from its initialstate back to the initial state and the �nite automaton representing the MSC transitsfrom the initial state to a �nal state. 16

� An inconclusive observable is an observable of the labeled transition system, whichhas a pre�x with a pass observable in common, but the �rst event, in which theydi�er is an input.� A fail observable is not an observable of the labeled transition system. It is anarbitrary sequence of observable events, which has a pre�x with a pass observable incommon. The �rst event, in which they di�er, is an input.For de�ning the three sets of observables formally, we need the notion of possible andunique pass observables.4.2 Possible and unique pass observablesA possible pass observable is an observable, where the labeled transition system LTS canperform a cycle from the initial state to the initial state and the �nite automaton FAtransits form the initial state to a �nal state. We de�ne the set of possible pass observablesPPO by : PPO = Ob(LTS; fq0g; fq0g) \ Ob(FA; fs0g; F)A possible pass observable does not ensure, that every corresponding trace leads the labeledtransition system from its initial state back to its initial state and the �nite automatontransits from its initial state to a �nal state. For this aim we de�ne so called unique passobservables UPO by:UPO = fw 2 PPO j Tr(LTS; w) � [Tr(LTS; fq0g; fq0g) \ Tr(FA; fs0g; F)]gSince we only consider the maximal corresponding traces of an observable w: Tr(LTS; w),this de�nition works only if the initial state of the labeled transition system is a stablestate, i.e. only observable events can cause progress in the initial state.4.3 Pass, Fail and Inconclusive observablesNow we de�ne a test case TC = (Pass;Fail; Inco) for a labeled transition system LTS anda �nite automaton FA .� Pass. For the pass observables of the test case Pass we take a subset of the shortestunique pass observables UPO (see 1.). Each element of the pass observables mustbe alternative to each other element (see 2.) and there is no further shortest uniquepass observable, which is not alternative to all pass observables (see 3.).1. Pass � UPO ^2. 8v; w 2 Pass : (v 6= w! v altto w) ^3. 8v 2 UPO : (v 2 Pass_ 9w 2 Pass : :(v altto w))� Inco. For the pass observables Pass we de�ne the shortest inconclusive observablesof the test case Inco. Inco denotes the minimal alternative observables of Pass.Inco = fv 2 Ob(LTS; fq0g; Q) j 9w 2 Pass : v altto wg � pref(Pass)� Fail. The fail observables Fail are the minimal alternatives of the pass and incon-clusive observables.Fail = fv 2 OE� j 9w 2 Pass : v altto wg � pref(Pass[Inco)17

4.4 Calculation of a test caseWithin the previous section a test case for a given labeled transition system and a given�nite automaton is de�ned, but there is no algorithm to calculate it. By calculating atest case we have to solve a typical reachability problem, i.e. sometimes a certain event isexecuted or a certain state is reached.For �nite automata the reachability problem is solved and there exist e�cient algo-rithms to calculate shortest traces, which lead to a certain state or contain a certain event[HU79]. But the decidability of the reachability problem of the labeled transition systemdepends heavily on its design. In [BZ83] it is proved, that the reachability problem forcommunicating �nite state machines, which communicate by means of unbounded FIFObu�ers is undecidable. Subsequently the reachability problem for a labeled transition sys-tem, which represent asynchronously communicating processes e.g. like SDL descriptions,is undecidable.One way to search for observables with required properties is to simulate the labeledtransition system and the �nite automaton in parallel. There are di�erent search methods,like depth search and breadth search. Breadth search is not usable, since it is impossible tostore all states11. Also depth search is not applicable, since it is not possible to guaranteetermination.Therefore, we use a k-bounded depth search. A k-bounded depth search evaluates allpossible traces of length k. If no trace with required properties is found, then the searchmay be repeated with a higher bound or stopped the search without results.The procedure of generating test cases. The procedure for generating a test casebased on an SDL description and an MSC can be structured in four steps:� Step 1: In a k-bounded depth search with increasing bound k possible pass observ-ables are calculated.� Step 2: Based on the possible pass observables we calculate the unique pass observ-ables . If there are no unique pass observables we go back to step 1.� Step 3: We choose a subset of the shortest unique pass observables , which arealternative to each other. This are the pass observables of our test case. Based onthe pass observables we calculate the corresponding inconclusive observables.� Step 4: The pass observables and the inconclusive observables have to be trans-formed into TTCN. Furthermore the fail observables have to be added by means ofthe default behaviour.Open problems. In this paper the problem of generating test cases from SDL descrip-tions and MSCs is transformed into a search problem. The expense of the search heavilydepends on the SDL description, which represents the test architecture (cf. section 2.2).The test architecture is derived from a system speci�cation by omitting parts, which arenot tested and by adding SDL processes for LT and UT. LT and UT are modelled asprocesses, which can receive and send any valid signal at any time.11Note a state represents a global state of the SDL system, e.g. the control states, contents of the queuesand the values of the variables. 18

An open problem is the optimal modelling of the test architecture, especially of LTand UT, since this may decrease the search expense. The optimization of LT and UTmay include restrictions on the sequences of signals, which can be sent and received, andrestrictions on the values of signal parameters.5 On the implementation of the presented methodThe presented method for generating test cases is developed and implemented at theUniversity of Berne within the research project12 'Conformance Testing - A Tool for theGeneration of Test Cases'.Figure 13 presents the architecture of the implemtation. The test case generationtool is structured in the three parts SDL simulator, MSC simulator and test case gener-ator. Both simulators consist of a transformator and an interpreter. The transformatorsread descriptions in phrase representation of SDL (SDL/PR) and MSC (MSC/PR) andtransform them into internal representations. Afterwards the internal representations aresimulated by the interpreters. The test case generator is structured in four modules:� Calculation of possible Pass observables.� Calculation of unique Pass observables.� Calculation of Inconclusive observables.� Generation of the corresponding TTCN/MP13 code.The tool is implemented on Sun workstations. Its inputs are MSC/PR and SDL/PR de-scriptions [CCI92a, CCI92b], and its output is a TTCN/MP description [ISO91b]. Front-and backends of the tool are commercial SDL, MSC and TTCN editors.6 Summary and outlookA method for the generation of test cases based on SDL descriptions and MSCs is pre-sented. The approach assumes that the purpose of a test case is given by at least oneMSC. Furthermore, the problem of assigning unique test verdicts is discussed and a solu-tion by de�ning unique pass observables is presented. The whole approach is formalizedby relating the traces of a labeled transition system representing an SDL description tothe traces of a �nite automaton representing an MSC. The method is implemented andits applicability for real systems will be proven within a following case study. Althoughthis paper presents the approach by means of SDL and MSCs, it may be possible to applyit to any speci�cation which can be represented by a labeled transition system and to anytest purpose which can be represented by a �nite automaton.12F & E project, no. 233, funded by Swiss PTT.13TTCN/MP denotes the machine processable form of TTCN.19

Generation of TTCN/MP code

TTCN - Backend

Test case generator

MSC Interpreter SDL Interpreter

SDL Simulator MSC Simulator

Tool

MSC - FrontendSDL - Frontend

SDL Transformator MSC Transformator

Calculation of possible pass observables

Calculation of unique pass observables

Calculation of inconclusive observablesFigure 13: The tool architectureReferences[Bri87] E. Brinksma. On the existence of canonical tests. Technical Report INF-87-5,University of Twente, Niederlande, 1987.[BRP89] Anne Bourget-Rouger and Combes Pierre. Exhaustive validation and test gen-eration in Elvis. In O. Faergemand and M.M. Marques, editors, SDL'89: Thelanguage at work, volume 4 of Proceedings of the fourth SDL Forum, pages 231{245. North Holland, 1989.[BZ83] Daniel Brand and Pitro Za�ropulo. On communicating �nite state machines.Journal of the Association for Computing Machinery, 30(2):323{342, April 1983.[CCI92a] CCITT SG X. Message Sequence Chart (MSC). Recommendation Z.120, 1992.Geneva.[CCI92b] CCITT SG X. Speci�cation and description language (SDL). Recommendationz.100, 1992. Geneva. 20

[Cho78] T.S. Chow. Testing software design modeled by �nite state machines. IEEE-SE,4(3):178{187, 1978.[Fin88] Alan Finkel. A new class of analyzable CFSMs with unbounded FIFO chan-nels. In S. Aggrawal and K. Sabnani, editors, Protocol Speci�cation, Veri�cationand Testing, volume 9 of Proceedings of the IFIP WG 6.1 eighth InternationalSymposium on Protocol Speci�cation, Testing and Veri�cation, pages 283{294.North Holland, 1988.[GGR] Jens Grabowski, Peter Graubmann, and Ekkart Rudolph. The standardisationof Message Sequence Charts. submitted to the Software Engineering StandardsSymposium '93.[GHL+92] Jens Grabowski, Dieter Hogrefe, Peter Ladkin, Stefan Leue, and Robert Nahm.Conformance testing - a tool for the generation of test cases. Interim Report ofthe F & E project contract no. 233, funded by Swiss PTT, 1992.[GR92] J Grabowski and E Rudolph. Message Sequence Charts (MSC) - a survey ofthe new CCITT language for the description of traces within communicatingsystems. Technical Report IAM-92-022, University of Berne, November 1992.[Hog91a] Dieter Hogrefe. Conformance testing of communication protocols in the frame-work of formal description techniques. Technical Report IAM-91-007, Universityof Berne, Institut for Informatik, 1991. 32 p.[Hog91b] Dieter Hogrefe. OSI formal speci�cation case study: The INRES protocol andservice. Technical Report IAM-91-012, University of Berne, 1991.[HU79] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory,Languages and Computation. Addison Wesley, 1979.[ISO91a] ISO/IEC JTC 1/SC 21 N. Information technology - Open System Interconnec-tion - conformance testing methodology and framework - Part1-5. InternationalStandard 9646, ISO/IEC, 1991.[ISO91b] ISO/IEC JTC 1/SC21. Information technology - Open Systems Interconnection- conformance testing methodology and framework - Part 3: The Tree andTabular Combined Notation. International Standard 9646-3, ISO, 1991.[KW91] Jan Kroon and Antony Wiles. A tutorial on TTCN. In Protocol, Speci�cation,Testing and Veri�cation, volume 11 of 11th International IFIP WG6.1 Sympo-sium on Protocol, Speci�cation, Testing and Veri�cation, pages 40{92, 1991.[Nah93] Robert Nahm. Semantics of simple SDL. In GI/ITG Fachgespr�ach, 1993.[Wez90] Clazien D. Wezeman. Protocol conformance testing using multiple UIO-sequences. In E. Brinksma, G. Scollo, and C.A. Vissors, editors, Workhop onProtocol Speci�cation, Veri�cation and Testing, volume 9 of Proceedings of theIFIP WG 6.1 ninth International Symposium on Protocol Speci�cation, Testingand Veri�cation, pages 131{143. North Holland, 1990.21

A SequencesSet of sequences. Let A be an arbitrary set, then we de�ne the following three sets� A� are the �nite sequences over A,� A! are the in�nite sequences over A and� A1 = A� [A! are the �nite and in�nite sequences.Operations on sequences. Let S � A1, t; u; v 2 A1 and a; b; c; d; a0; : : : ; an 2 A� hi is the empty sequence,� ha0; : : : ; ani is the �nite sequence consisting of the elements a0; : : : ; an,� t � u denotes the concatenation of t and u (Note, if t is in�nite the t � u = t),� t < u "t is a strict pre�x of u" holds, i� 9v 6= hi : t � v = u,� t v u "t is a pre�x of u" holds, i� 9v : t � v = u,� #t denotes the length of t (Note, if t is in�nite then #t =1),� a c
t denotes the �ltered trace of t, which contains only the element a,e.g. a c
 < a; b; a; c >=< a; a >. As a generalisation of this �lter operation, the �rstoperand may also be a set,� f : A! A0 can be canonically extended to sequences, byf(< a0; : : : ; an; : : : >) =< f(a0); : : : ; f(an); : : : >,� f : A1 ! A01 can be canonically extended to sets of sequences byf(S) = ff(t) j t 2 Sg,� pref(S) = ft j 9u 2 S : t v ug, is the set of pre�xes of S,� S = ft 2 S j :9u 2 S : t < ug are the maximal sequences and� S = ft 2 S j 8u 2 S : #t � #ug are the shortest sequences.
22

B AbbreviationsCCITT Comit�e Consultativ International T�el�egrahique et T�el�ephoniqueETSI European Telecommunications Standards InstituteFDT Formal Description TechniquesISO/IEC International Organisation for Standardisation/International Elec-tronical CommissionIUT Implementation Under TestLT Lower TesterMSC Message Sequence ChartMSC/PR MSC Phrase RepresentationOSI Open Systems InterconnectionPCO Points of Control and ObservationPDU Protocol Data UnitSDL Speci�cation and Description LanguageSDL/PR SDL Phrase RepresentationSP Service PrimitiveSUT System Under TestTTCN Tree and Tabular Combined NotationTTCN/MP Machine Processable TTCNUIO Unique Input Output sequencesUT Upper Tester

23

