
Component Interface Description Using HyperMSCs and Connectors

 Peter Graubmann Ekkart Rudolph Jens Grabowski
 Siemens AG, München Technische Universität München Med. Universität zu Lübeck

peter.graubmann@mchp.siemens.de rudolphe@informatik.tu-muenchen.de grabowsk@itm.mu-luebeck.de

Abstract

Modelling of complex systems with Message Sequence
Charts requires several extensions in order to arrive at
sufficiently transparent and manageable descriptions. Two
extensions of major importance are introduced within this
paper: on the one side, extended High Level MSCs de-
noted as HyperMSCs are allowed to contain MSC refer-
ences with hypertext-like inscriptions or in expanded form
as detailed MSCs; on the other side, MSC connectors are
introduced in form of MSCs representing high level com-
munication patterns between MSC components. The intro-
duction of MSC connectors may be viewed as a generali-
sation of the gate concept and as a completion of the MSC
language for communicating operator expressions.
Moreover, MSC connectors can be employed quite gener-
ally as a communication description on a higher level of
abstraction - a structural language construct which obvi-
ously is still missing in the MSC standard. These new con-
cepts allow a system modelling based on stepwise refine-
ment starting with HyperMSCs, decomposed instances and
MSC connector communication

1. Motivation

The ITU standard language Message Sequence Chart
(MSC) [16][17] is generally accepted as a central visual
modelling technique for the description of the dynamic
behaviour of systems, in particular of the communication
behaviour. As such, MSC is equally popular in the tele-
communication area where it is used dominantly in combi-
nation with SDL [2], as in the field of object oriented
modelling in form of the OO variant UML - Sequence
Diagrams [6][12]. While the MSC standard language
MSC-2000 [17] is perfectly tailored for the description of
sets of sample behaviour, in case of a more comprehensive
description it easily leads to specifications that are difficult
to handle and also lack transparency. However, incoherent
collections of sample behaviour are not sufficient for an
adequate description of complex systems. Thus, in today’s
system development, comprehensive behaviour descrip-
tions are demanded, if not for the interaction of complete
systems, so at least for identifiable, self-contained parts,

as, e.g., for interface protocol-, test case-, and Use Case
descriptions [1].

As a consequence, there is the danger that, in applica-
tions, MSC descriptions increasingly may appear to be
over-complicated and that the MSC language is becoming
less attractive at least for the modelling of complex sys-
tems. It is the main purpose of this paper to propose cer-
tain extensions of the MSC language in order to preserve
the transparency and simplicity of MSC specifications also
on an advanced level of system modelling which essen-
tially refers to the usage of High Level MSCs.

High Level MSCs (HMSCs) [10][13] are widely appre-
ciated as a means to present the dynamic system behaviour
on a higher level of abstraction. As such, HMSCs have
been compared to roadmaps since they may be viewed as a
means to navigate within sets of basic MSC descriptions.
Nevertheless, the connection between High Level MSCs
and basic MSCs, at present, is unsatisfactory since, in case
of many small separate MSC reference definitions, the
specification becomes unmanageable [5][13]. Within this
paper, hypertext-like mechanisms are proposed for
HMSCs, in order to render possible the arbitrary folding
and unfolding of MSC references, thus providing the tran-
sition from a high level HMSC view to basic MSCs in a
smooth manner. Thus, eventually also the strict borderline
between HMSCs and basic MSCs is disappearing.

Another deficiency is that HMSCs do not support a
component oriented view, i.e., HMSCs, at present, are not
tailored for the high level description of individual system
components which communicate with each other via com-
munication protocols. A first attempt towards a component
oriented view has been provided in [10], however, the in-
troduction of gates for HMSC within this paper can be
seen only as a first step and in general proves to be not
completely appropriate. Such partitioning mechanisms,
however, are crucial for a system modelling which is based
on stepwise refinement of components and their communi-
cation behaviour. Certain refinement mechanisms are pro-
vided in the MSC standard by the concept of ‘decomposed
instances’ [13][17] which is quite related to HMSCs.
However, a corresponding convincing and sufficiently
general concept for the refinement of the communication
behaviour is still lacking though some proposals have been
made into this direction [4][8]. MSC references [13][17]

may be used only in very simple cases as is shown in
Chapter 3. Within this paper, we propose MSC connectors
for that purpose. MSC connectors quite generally mirror
the fact that today's system development is component
oriented. The communication between parts of a system,
i.e., its components, follows interaction patterns which are
expressed in the component oriented world as software
connectors [3]. MSC connectors allow to define recurring
interaction patterns and to apply them jointly with the
other MSC abstractions, like High Level MSCs, MSC ref-
erences, and decomposed instances. The HyperMSC con-
cept of folding and unfolding can be conveniently carried
over to MSC connectors. MSC connectors have been in-
troduced recently in an informal way for some special
cases [5]. Within this paper, they are described for the first
time in full generality being defined themselves in form of
MSCs.

The concepts of HyperMSCs and MSC connectors have
been essentially stimulated by the development of a
graphical format for TTCN-3 [14][15]. Practice has shown
that a naive translation of TTCN test cases into MSC de-
scriptions does not lead to diagrams that are sufficiently
transparent. Experiments with the employment of inline
expressions and HMSCs have led quite naturally to the
idea of HyperMSCs. In addition, the translation of TTCN-
3 test components leads to MSC test component descrip-
tions which have to be merged by a join operation. For an
appropriate specification of such a join operation, an MSC
connector has been proposed which allows to describe the
exchange of co-ordination messages among test compo-
nents on a suitable level of abstraction.

Another source for the development of the MSC con-
nectors and the HyperMSC mechanism stems from consid-
erations with respect to system family engineering where
the composition of (mostly pre-developed) components
and their variants is prevalent. In this context, it becomes
essential to clearly define and describe the protocols that
are associated with the component interfaces. For system
families, protocols describing the interaction of their parts
become valuable assets in the design management space
when it comes to identifying which component is appro-
priate to be re-used in a particular context. MSC connec-
tors are well suited to support the development of system
families. So, at present, the investigation of MSC connec-
tors is carried out within the ITEA projects ESAPS (Engi-
neering Software Architectures, Processes and Platforms
for System Families) [7] and its continuation CAFÉ (From
Concept to Application in System Family Engineering)
funded by the German Ministry for Education and Re-
search.

Within Chapter 2, the concept of HyperMSCs is pre-
sented. Chapter 3 describes the MSC connector concept in
the context of decomposed instances. The next chapter,
Chapter 4, explains the concept by means of the well

known Inres protocol. Chapter 5 shows that the old MSC
message gate concept is elegantly subsumed by the con-
nector concept and, eventually, Chapter 6 provides conclu-
sion and outlook.

2. Advanced Visual System Modelling with
HyperMSCs

The MSC language contains several constructs for be-
haviour composition and refinement – decomposed in-
stances, MSC references, MSC reference operator expres-
sions, inline expressions and HMSCs [8][13][17]. There is
a lot of overlap between these constructs, however, the
variety is justified by different application areas and dif-
ferent forms of visualisation. Nevertheless, a more unify-
ing view would be desirable together with the possibility to
easily switch between different representations. In par-
ticular, there is an obvious gap between HMSCs and the
rest of the MSC language which disturbs the homogeneity
of the language. Though all of these structural concepts
have proven to be most fruitful for sets of sample behav-
iour descriptions, they are not yet perfectly suited for ad-
vanced visual modelling of more comprehensive behaviour
descriptions [5][6][15]. A more unifying standpoint even-
tually leads to the concept of HyperMSCs which also pro-
vides a suitable visualisation means. To apply this concept
most fruitfully, a corresponding advanced tool support
appears to be mandatory.

As a first step, we want to recall the relation between
MSC operator expressions and inline expressions. As can
be seen in Figure 1, inline expressions describe just un-
folded MSC reference operator expressions.

msc communication

A B

a

d

msc operator_example

loop reference

msc inline_example

loop

A B

a

d

c
b

msc reference

A B

c
b expands to

Figure 1 Expansion of an MSC operator expression by means
of an inline expression.

Whereas in case of MSC operator expressions the un-
folding is well established (except for the operator seq)
there is no corresponding possibility in the MSC language
in case of simple MSC references. Some SDL- and MSC-
tool manufacturers, however, have soon discovered the
deficiency in the language and consequently provided a
corresponding inline definition for MSC references. It
should be pointed out, that this is not a pure tool issue but
demands a real extension of the language if the expanded

form still contains the MSC reference symbol. In Figure 2,
such an unfolding of an MSC reference is provided.

msc communication

A B

a

d

msc reference_example

reference
expands to

msc communication

A B

a

d

msc reference_example

reference

c
b

Figure 2 Unfolding of an MSC reference within the embedding
MSC.

The expressiveness of this MSC reference inline expan-
sion becomes more evident in case of HMSCs [5][9].
HMSCs describe the composition of MSCs in form of a
graph with MSC references and conditions as nodes. This
way, they abstract from instances and messages which are
not shown in the diagram. Each MSC reference points by
means of the reference name to another MSC in the MSC
document which defines the meaning of the reference, i.e.,
each reference symbol can be seen as a placeholder for an
MSC diagram which has to be defined somewhere else in
the MSC document. In case of many fairly small MSC
reference definitions, such a representation soon becomes
quite complex and in practice is difficult to handle. The
inline expansion of MSC references turns out to be useful
particularly in such cases [5][13].

msc connection

disconnected

connection request ok

connection confirm
ready for data transfer

connected

connection request
message lost

time out – no response
or message lost

disconnection

Figure 3 HyperMSC for connection establishment. All MSC
references are folded into the respective MSC refer-
ence symbols.

Within HMSCs, several expanded MSC references may
be combined to one coherent expanded MSC reference
with the connection points being shifted to the borderline
of the MSC reference. This way, a convincingly transpar-
ent representation is obtained even in case of many alter-
natives and loops [5][6] (see Figure 3 and Figure 4).

The folding and unfolding of HMSCs can be compared
with electronic roadmaps where certain parts can be se-
lected and expanded in detailed form whereas the folded
parts are presented in an abbreviated form as overview.
Because of the analogy to hypertext-like mechanisms we
have chosen the name HyperMSC for such extended
HMSCs. MSC reference symbols in HyperMSCs may ei-
ther contain hypertext-like descriptions or, in its expanded
form, detailed MSCs.

msc connection

connection request
message lost

time out – no response
or message lost

disconnection
ICONreq

initiator

connection
request ok

ICON
ICONind

ICONresp
ICONF

ICONconf

responder

wait wait

connection confirm
ready for datatransfer

connected

disconnected

Figure 4 HyperMSC of Figure 3, where the path describing a
“successful connection” is expanded.

In the context of HyperMSC, special attention has to be
paid to the concept of decomposed instances. This concept
is useful for the description of components which can be
further decomposed by means of a refining MSC. How-
ever, it can be alternatively modelled by a corresponding
HMSC containing one MSC reference which points to-
wards this refining MSC (see Figure 5). Within this paper
we use the strong relationship between decomposed in-
stances and HMSCs for the purpose of inline expansions of
decomposed instances.

It should be noted that the decomposed instance “A” in
Figure 5 is represented graphically by drawing the instance
axis with a double line. This appears to be more intuitive
than the keyword decomposed and is also stimulated by a
corresponding connector symbol introduced in Chapter 3.

msc decomp

A

expands to

A1 A2

a

b

msc A

c
A1 A2

b

a
c

A

msc decomp

Figure 5 Inline expansion of a decomposed instance “A” with
refining MSC “A” by means of an HyperMSC.

3. System Development with MSC Connectors
and Decomposed Instances

The refinement of MSCs normally is based on the con-
cept of decomposed instances on the one side and on the
refinement of messages on the other side, whereby one
message in the next step of refinement may be replaced by
a whole set of messages describing a complex communi-
cation pattern [4][8]. Obviously, messages and instances
are treated on a different footing. The concept of MSC
connectors that is introduced in this chapter, in a certain
respect can be viewed as the message counterpart to de-
composed instances. MSC connectors somehow represent
high level messages and therefore are described graphi-
cally as double line message arrows (see Figure 6). MSC
connectors in general may describe a complex communi-
cation behaviour which itself is best defined by means of
an MSC. MSC connector definitions are distinguished
from MSCs by the keyword connector. Otherwise they
resemble MSCs with only a few additional constructs. A
connector may be unidirectional, indicated by a single ar-
row head into the direction of the one-way communication,
or it may be bi-directional as indicated by a double arrow
head.

connector con

A

a
b

B
msc communication

A B

con

msc communication

A B

a
b

msc communication

expands to

Figure 6 Basic connector definition.

MSC connectors contain external connector instances
which represent abstractions of the entities to which the
connector shall be connected. External connector instances
show a distinguished instance header: in the textual repre-
sentation they are identified by the keyword external, in
the graphical representation they show an “x” in their in-
stance head symbol. As a first simple example see Figure 6
with the MSC “communication”. The two instances “A”
and “B” communicate via the connector “con” which is
defined within the connector MSC “con”. Obviously, the

connector “con” just means a compact description of the
exchange of the messages “a” and “b”. In case where the
connector is joined to plain instances, it plays the same
role as an MSC reference since both constructs are
placeholders for the defining MSC to which they are
pointing. Also both, MSC connector definitions and MSC
reference definitions, may contain further instances in ad-
dition to the connecting instances of the embedding MSC.

Connectors, however, play a much more sophisticated
role if they describe the communication behaviour between
decomposed instances or MSC references. In this case, the
events on the external connector instances in the connector
definition have to match (synchronise) with corresponding
events on the instances to which the connector is attached.
This matching mechanism is closely related to the join
operation introduced in [8].

msc communication

A B

con

expands to

A1 A2

aßcon

bàcon

msc A

c

B2 B1

conßa

conàb

msc B

d

connector con

A2

a
b

B2A1 B1
msc communication

A2

a

b

B2A1 B1

dc

Figure 7 Connector communication between decomposed
instances.

Figure 7 shows an MSC with the decomposed instances
“A” and “B” where decomposed instances are indicated
with doubled lines for their instance axes, just in analogy
to the double lined arrow of the connector. Each decom-
posed instance is defined by a corresponding MSC refer-
ence. The MSC connectors between decomposed instances
bundle the messages which are crossing the environment of
the refining MSCs. This is more clearly visualised in
Figure 8, where the decomposed instances “A” and “B”
are shown in expanded form as HyperMSCs. Thereby, it
has been used that decomposed instances can be equiva-
lently represented as HMSCs.

A1 A2

aßcon

bàcon
c

B2 B1

conßa

conàb
dcon

msc communication

A B

Figure 8 Decomposed instances expanded in form of Hy-
perMSCs.

Within these refining MSCs “A” and “B”, connector
pointers are added to message names in order to indicate to

which connector a message is sent (<message name>à
<connector name>, e.g., aàcon), or from which connector
a message is received (<connector name>à<message
name>, e.g., conàa). Obviously, the messages “c” and “d”
do not occur in the connector definition. However, if one
tries to replace the connector by a description using an
MSC reference, the messages “c” and “d” have to be in-
cluded in the MSC reference definition. This demonstrates
already a characteristic feature of MSC connectors which
merely focus on the communication behaviour in contrast
to MSC references that in general also contain internal
behaviour. Obviously, MSC connectors and MSC refer-
ences play a different role in system modelling. For the
description of the communication behaviour on a higher
level of abstraction, MSC connectors are demanded since
they abstract from internal events. Beyond that, MSC con-
nectors rather are intended to describe abstract communi-
cation patterns than concrete message sequences. This be-
comes evident in case of the probably most common MSC
connector, namely the FIFO connector (see Figure 9).

expands to

msc fifo_communication

A B

fifo

#ßX [*ßx] #ßY

connector fifo

X Y

xloop

msc fifo_communication

A1 A2

c

B2 B1

a
d

balt

b

fifoàb

msc fifo_communication

B2 B1
fifoàa

fifoàb

d

alt
fifo

#ßX [*ßx] #ßY

B

A1 A2

aàfifo

bàfifo
c

A

ex
pa

nd
s

to expansion of the
decomposed instances

expansion of the
MSC connector

Figure 9 Definition and use of a FIFO connector.1

In the definition of the FIFO connector (connector
“fifo”), the external connector instance “X” represents the
sender, the external instance “Y” the receiver role. We
have used a mapping of the external instances to the gen-
eral instance identifier ‘#’ which indicates that all instances

1 A type concept – not detailed here due to lack of space – would be

needed to avoid misunderstandings when one connector definition is
instantiated several times within the same diagram (cf. the similar
problem for MSC references).

involved in MSC reference “A” and “B” may be sender or
receiver, respectively. We have also used the mapping to
the general message identifier “*” which indicates that all
messages sent to or received from the connector may be
matched, i.e., in the situation of Figure 9, both the mes-
sages “a” and “b” are conveyed through the connector
“fifo”. The example demonstrates the generality of the
MSC connector concept. In practise, of course, a pre-
defined FIFO connector will be used by means of the key-
word FIFO.

The above mentioned mapping mechanism for external
instances can be generalised to select exactly which exter-
nal instance of an MSC connector is to be associated with
an instance in an MSC reference in cases where it is not
obvious by name identification. In a similar form, message
mapping makes it possible to express in detail which mes-
sage in the connector definition is to be identified with the
actual messages in the MSC references.

4. The Inres Example

The Inres service [2] is an abridged version of the Ab-
racadabra service. The service is connection oriented. A
user who wishes to communicate with another user via the
service must first initiate a connection before exchanging
data. For simplification purposes, the service is not sym-
metrical. The Initiator-user can initiate a connection and
later send data. The Responder-user can accept the con-
nection or reject it. After acceptance, it can receive data
from the initiating user. Initiator and Responder have to
use the underlying Medium-service for their communica-
tion. The Medium-service is unreliable and data may be
lost.

In the following, we describe the “Connection estab-
lishment and Disconnection phase” in Inres.

A connection establishment is initiated by the Initiator-
user with an ICONreq message to the Initiator (i.e., to the
sender component in the Inres protocol). Within the MSC
diagrams, Initiator-user and Responder-user will be repre-
sented by the environment. The Initiator then sends a CR
(connection request) to the Responder (i.e., the target
component to which data shall be transmitted). If the Re-
sponder receives a CR from the Initiator, the Responder-
user gets an ICONind message. The Responder-user can
respond with ICONresp or IDISreq. ICONresp indicates
its willingness to accept the connection. The Responder
thereafter sends a CC (connection confirm) to the Initiator.
If the Initiator receives a CC, it sends an ICONconf to its
user and the data transmission can be started. An IDISreq
from the Responder-user results in the sending of a DR
(disconnection request) to the Initiator. If the Initiator re-
ceives a DR from the Responder, the Initiator sends an
IDISind message to the Initiator-user. If the Initiator re-
ceives nothing at all in response to a CR after time T, CR

is sent again. If, after four attempts, still nothing is re-
ceived by the Initiator, the Initiator sends an IDISind to the
Initiator-user.

connector request

initiator responder

CRloop

connector response

initiator responder

xloop

msc INRES

Initiator Responder

request

response

[CC,DRßx]

Figure 10 Inres – basic connector description.

In the following, the notation clearly distinguishes be-
tween decomposed instances (indicating the components of
the Inres protocol) and their corresponding refining in-
stances by using capital initial letters for the names of the
decomposed instances (“Initiator”, “Responder”) and
lower case initial letters for instance names of refining
instances (“initiator”, “responder”). Thus, the decomposed
instance “Initiator” is refined by the instance “initiator”
and the decomposed instance “Responder” by the instance
“responder”, whereby, in this case, the refinement is pro-
vided merely in form of a complex behaviour description
instead of a splitting of instances.

connector request

loop

coder_ini Medium coder_res responder

MDATreqCR

opt MDATind CR

initiator

connector response

loop

coder_ini Medium coder_res responder

MDATreq x

opt MDATindx

initiator

Figure 11 Inres – connector description taking into account the
unreliable Medium.2

In Figure 10, first the simpler case of a connection set-
up is modelled where the Medium-service is omitted and
the messages are directly exchanged between “Initiator”
and “Responder”.

In Figure 11, a connector definition is provided which
takes the unreliable medium into account. This example
demonstrates that MSC connectors are capable to describe

2 In order to avoid ambiguities, in a complete description also the scope

of x with respect to the mapping onto values “CC” and “DR” has to be
defined. Here, the scope of the binding of x is restricted to one loop.
Scoping rules are not detailed further due to the lack of space.

also more complex message interfaces. In particular, the
connectors contain non-external connector instances
(“coder_ini”, “coder_res”, “Medium”). This example also
indicates how a system may be refined by modifying the
connector definition without changing the decomposed
instances.

The two connectors “request” and “response” can be
unified by using a further abstraction. Obviously, the con-
nection “request” can be mapped onto the connection “re-
sponse” if we use the abstraction of the concrete message
identifier “CR” to “x” and exchange instance “initiator”
and “responder” on the one hand, and instance “coder_ini”
and “coder_res” on the other hand. This leads to the fol-
lowing unifying abstract connector “con” (see Figure 12).
The further abstraction is in line with the concept of reus-
ability which is a central idea behind the MSC connector
concept.

connector con (u,v)

loop

u Medium v res

MDATreqx

opt MDATind x

ini

msc INRES

Initiator Responder

con (coder_ini, coder_res)

initiatorßini [CRßx] responderßres

con (coder_res, coder_ini)

initiatorßres [CC,DRßx] responderßini

Figure 12 Unification by means of the abstract connector “con”.3

Within Figure 13, the decomposed instances “Initiator”
and “Responder” are shown in expanded form.

The traces described by the HMSCs “Initiator” and
“Responder” have to synchronise via the MSC connectors
“request” and “response” (which are defined in Figure 11).
Figure 14 demonstrates this for the initial step of the Inres
protocol by synchronising the initial MSC references “con-
req” in HMSC “Initiator” and “conind” in HMSC “Re-
sponder”. In the beginning, only the instance “initiator” is
ready to receive the message “ICONreq” from the Initia-
tor-user (i.e., from the environment) and to send a connec-
tion request to the “Responder”. Depending on the unreli-
able medium, the “Responder” may receive the connection
response or not and send a message “ICONind” to the Re-
ceiver-user (which is also represented by the environment).

3 Note the parameterisation of the connector definition and the mapping

of the connector’s external instances (ini, res) onto the instances ini-
tiator and responder in the respective decomposed instances which is
defined by the expressions “initiatorßini”, etc.

msc INRES

Initiator

conreq

setup

termination

initiator: disconnected

[initiator: disconnected]

[initiator: wait]

[initiator: connected]

Responder

conind

response

disreq

responder: disconnected

[responder:disconnected]

[responder: wait]

[initiator: connected]

request

response

[CC,DRßx]

Figure 13 Expansion of the decomposed instances “Initiator”
and “Responder”.

The specification of the connection establishment and
disconnection phase can be extended to the inclusion of
the data transfer in a similar manner. Because of its rela-
tive simplicity, the Inres protocol is ideally suited to dem-
onstrate the capacity of the connector concept for the
specification of complex communication interfaces. In
fact, the MSC connectors “request” and “response” com-
prise already an amazing number of concrete communica-
tion cases due to the possibility of several repetitions of the
connection request in case of time-out. Obviously, a com-
prehensive specification using basic MSCs would be not
manageable, however, selected representations in form of
basic MSCs can easily be derived from the high level de-
scription.

5. Subsuming the MSC Message Gate Con-
cept under MSC connectors

Message gates in the MSC standard language are used
to define connection points for messages with respect to
the interior and exterior of MSC references and inline ex-
pressions. In simple cases, i.e., MSC references without
operator expressions, the interpretation of gates is straight-
forward. In case of intricate operator expressions, an un-
ambiguous and convincing interpretation has not yet been
given [9], cf. also the respective discussion in [11].

msc INRES_first_step

request

response

conind

requestàCR ICONind

responder

wait

disconnected

conreq

alt

ICONreq

initiator

CRàrequest

T

N := 1

wait

DRßresponse

CCßresponse

disconnected

msc INRES_first_step

coder_ini Medium coder_res responder

MDATreqCR

opt MDATind CR

initiator

ICONreq

T

N := 1

disconnected

ICONind

wait wait

disconnected

ex
pa

nd
s

to

[CC,DRßx]

Figure 14 Expansion of the first step (MSC references “conreq”
and “conind”) of the Inres specification in Figure 13.

Using the MSC connector concept, a mapping from
gates to a basic connector can be provided which eventu-
ally also leads to a general and unambiguous gate inter-
pretation. The basic connector definition is provided by a
simple message connection.

connector basic

X Y

x

msc gates

A B

a a

msc connect_gates

A B

aà basic basic
 AßX [aßx] BßY

is
 e

qu
iv

al
en

t
to

Figure 15 Replacement of an HyperMSC gate by an MSC con-
nector.

Within Figure 15, a gate is replaced by a basic connec-
tor and assigning the message name of the ‘gating’ mes-
sage to the connecting message in the basic connector
definition. As such, the message gate construct can be
viewed as a shorthand notation in case of the basic con-
nector.

The same gate interpretation by means of a basic MSC
connector can be used also in case of operator expressions.
As an example, we use the message communication of an
opt expression [9] (see Figure 16).

expands to

msc op_conn

A B

aopt a

msc op_conn

A B

aà basic basic
 AßX[aßx] BßY

opt

A B

a

msc op_conn

is
 e

qu
iv

al
en

t
to

Figure 16 Replacement of a gate in an operator expression by
an MSC connector.

6. Conclusion and Outlook

Within this paper, for the first time the MSC connector
concept has been introduced in full generality by employ-
ing MSCs for the connector description itself. The newly
introduced MSC connector concept makes a component
oriented system modelling by means of MSCs possible in
addition to the traditional system oriented view. Such a
component oriented view is demanded, e.g., in system
family engineering and particularly for the development of
modern test specification languages based on TTCN-3 and
MSC. Within this paper, the MSC connector concept has
been applied to a protocol specification which demon-
strates that MSC may become a universal modelling lan-
guage by means of this new extension. Though the range
of applicability of MSC with connectors appears to be
nearly unlimited, the main focus is still on the specification
of Use Cases, component interaction schemes (interface
protocols) and test cases. As such, the extended MSC lan-
guage is not intended to replace process oriented languages
like SDL or State Charts but rather to provide a smooth
transition from a communication oriented view to a proc-
ess oriented view.

7. References

[1] M. Broy, I. Krüger: Interfaces – Towards a Scientific Foun-
dation of a Methodological usage of Message Sequence Charts.
In: Formal Engineering Methods ICFEM’98 (J. Staples, M.G.
Hinchey, Shaoying Liu, editors), IEEE Computer Society, 1998.
[2] J. Ellsberger, D. Hogrefe, A. Sarma: SDL - Object oriented
Language for Communication Systems. Prentice-Hall.1997.
[3] A. Egyed, N. Metha, N. Medvidovi: Software Connectors
and Refinement in Family Architectures. In: Proceedings of the

3rd Int. Workshop on Software Architectures for Product Fami-
lies, Las Palmas de Gran Canaria, Spain, March 15-17, 2000.
[4] A. Engels: Message Refinement –Describing Multi-level
Protocols in MSC. In: Proceedings of the 1st SAM Workshop (Y.
Lahav, A. Wolisz, J. Fischer, E. Holz, editors), Berlin, June
1998, Informatik-Bericht Nr. 104, Humboldt-Universität Berlin.
[5] J. Grabowski, P. Graubmann, E. Rudolph: HyperMSCs with
Connectors for Advanced Visual System Modelling and Testing.
In: SDL Forum 2001 – to appear.
[6] P. Graubmann, E. Rudolph: HyperMSCs and Sequence Dia-
grams for Use Case Modelling and Testing. In: UML2000, 3rd

International Conference on The Unified Modeling Language (A.
Evans, S. Kent, B. Selic, editors), 02-06 October, 2000, York,
UK, Springer 2000.
[7] P. Graubmann, R. Wasgint: Methods for Interface Annota-
tions and Component Selection. SAG-WP2-0106-16, ESAPS
internal report, 2001.
[8] I. Krüger: Distributed System Design with Message Se-
quence Charts, PhD Thesis, Techn. Universität München, 2000.
[9] S. Loidl, E. Rudolph, U. Hinkel: MSC’96 and Beyond-a
Critical Look. In SDL’97 Time for Testing-SDL, MSC and
Trends, Proceedings of the 8th SDL Forum in Evry, France (A.
Cavalli, A. Sarma, editors), North Holland, Sept. 1997.
[10] S. Mauw, M. A. Reniers: High Level Message Sequence
Charts. In: SDL’97 - Time for Testing-SDL, MSC and Trends,
Proceedings of the 8th SDL Forum in Evry, France (A. Cavalli,
A. Sarma, editors), North Holland, Sept. 1997.
[11] M. A. Reniers: Message Sequence Chart: Syntax and Se-
mantics. PhD Thesis, Eindhoven Univ. of Technology, 1999.
[12] E. Rudolph, J. Grabowski, P. Graubmann: Towards a Har-
monization of UML-Sequence Diagrams and MSC. In: SDL’99 -
The Next Millennium, Proceedings of the 9th SDL Forum in
Montréal, Québec, (R. Dssouli, G.V. Bochmann, Y. Lahav, edi-
tors), Elsevier Science B.V., Amsterdam, 1999.
[13] E. Rudolph, J. Grabowski, P. Graubmann: Tutorial on Mes-
sage Sequence Charts (MSC-96). Forte/PSTV’96. Kaiserslau-
tern, Germany, October 1996.
[14] E. Rudolph, I. Schieferdecker, J. Grabowski: Development
of an Message Sequence Chart/ UML Test Format. In:
Proceedings of FBT’2000 - Formale Beschreibungstechniken für
verteilte Systeme, Lübeck, Germany (J. Grabowski, S. Heymer,
editors). Shaker-Verlag, Aachen, 2000.
[15] E. Rudolph, I. Schieferdecker, J. Grabowski: HyperMSC - A
Graphical Representation of TTCN. Proceedings of the 2nd

Workshop of the SDL Forum Society on SDL and MSC
(SAM'2000), Grenoble, France, June, 26 - 28, 2000.
[16] ITU-T Rec. Z.120 (MSC-96): Message Sequence Chart
(MSC). (E. Rudolph, editor), Geneva, 1996.
[17] ITU-T Rec. Z.120 (MSC-2000): Message Sequence Chart
(MSC). (O. Haugen, editor), Geneva, 1999.

