SDL- and MSC-based specification and
automated test case generation for INAP

Jens Grabowski and Dieter Hogrefe

Institute for Telematics, University of Liibeck,
Ratzeburger Allee 160, D-23538 Lilbeck, Germany
Email: {jens,hogrefé@itm.mu-luebeck.de

Abstract
The development of the Core INAP CS-2 standard and the corresparuatifay-

The SDL work for Core INAP at ETSI was done in the Technical (Sub-)Com
mittee SPS3 (TC SPS3) on a voluntary basis with support from énm&hent
Expert Group (PEX) at ETSI and the ETSI Technical Committee Methods for
Testing and Specification (TC MTS). Unlike other SDL models for INAf t
ETSI model has been done as part of the standardization process and ikguliblis
together with the standard as a normative (electronic) annex [5].

Reasons for ETSI to develop the Core INAP SDL specification have been the
facilitation of service development, feature interaction studies, swlésign and

test case generation. Traditionally, the development of test suitesrftoramance
tests of standardized protocols has been a major activity of ETSI. Untsly,

this test suite development has not been successful in some cases. Themeeare s
reasons for this: First, test suites have often been developed tootet@rdducts

mance test suites by expert teams at the European Telecommunications Standardsire already on the market before the corresponding test suites are pdblish

Institute (ETSI) are historical breakthroughs for the use of SDd. S C within

the international telecommunications standardization process. Forgh#rfie,

the textual description of a standard has no priority over the cormetipg SDL
specification. The power of a standard SDL specification has been shown by the
successful application of computer aided test generation methods for thecpro
tion of the necessary standard conformance test suites. This paper aesdtie

Core INAP CS-2 protocol specification and describes the test generatioe-pro
dure.

Keywords: SDL, MSC, TTCN, ASN.1, conformance testing, automatic test gen-
eration, standardization, ETSI, ITU-T

1 Introduction

With a complete SDL model for the European version of the Intelligezttdrk
Application Protocol (Core INAP), the European Telecommunicatioasd&irds
Institute (ETSI) is exploring new grounds. Traditionallyetbpecifications pub-
lished by ETSI have used SDL [18] only in an informal and illustrativay. This

second reason is cost. Because of the risk that the value is limited, thation

of the companies to participate in the development of a test suite teoilynis
sometimes low. A third reason is quality. Informal descriptions tendantain
ambiguities which may lead to misinterpretations. Even though the agipob

a conformance test suite by ETSI requires several reviews at diffepayessof

the test suite development process, the consistency between protegifitsgion

and corresponding test suite cannot always be guaranteed. The development o
complete formal SDL descriptions as the normative part of protocotorice
specifications is a possibility to tackle these problems.

In most cases, the development of a conformance test suite starts evitke ttifi-
cation of the test purposes of the individual test cases. A common ref@tisent

for test purposes is the Message Sequence Chart (MSC) language [20]. Mos
commercial SDL tools, like SDT [28] or ObjectGEODE [30] provide gibdi-

ties to check whether an MSC diagradescribes a behavior included in an SDL
description.

The development of the test suite should start in parallel with thie i§Bdeling.
The MSC test purpose descriptions are requirements for the SDL spéaificat

has advantages and disadvantages. The advantages are, e.g., that compared to fosnd their validation against the SDL description ensures that theseeewguits

mal specifications, informal descriptions are more understandable ariceriess
developmenttime. Disadvantages are, e.g., that the specifications are natenachi
processable and sometimes include ambiguities.

1The termMSCis used for a diagram written in the MSC language and the mgitself. Where
necessary, we distinguish between both by using the tbt8(S languagendMSC diagram

are met. In case of changes in the SDL specification, the re-validation of$i@sM
can be seen as regression testing, which helps to ensure and improvalityeodu

the protocol standard. After the finalization of the SDL specification hadtSC

test purposes, computer aided test generation (CATG) methods can be amplied f
the automatic generation of the conformance test suite.

The strength of such a methodology has been tested at ETSI by applying CAT
methods to the SDL specification of Core INAP. During test suite dgweént,

the validation of the MSC test purposes helped to detect and correct seversl err
in the protocol specification. Although Core INAP was the first apgbcadf
CATG methods within ETSI, it was shown that the cost for the teseslavelop-
ment can be reduced significantly.

The remaining parts of this article are organized as follows: Some basics ab
Intelligent Networks (IN) and the description techniques used for spatidh

are explained in Section 2. The development of the Core INAP SDL speitficat

at ETSI and the SDL specification itself are described in Section 3. The test
generation procedure is presented in Section 4. Finally, in Section 5, maym
and an outlook are given.

2 Application area and description techniques

In order to understand the complex working procedures for the davelopof
the Core INAP CS-2 SDL specification and the corresponding conformaste t
suites, some knowledge of IN, INAP and the languages and notations\s8C,

ternational Telecommunication Union — Telecommunications Standards Sector)
and ETSI standardize IN in several series of standards. These series aredgnow
capability setCS) and they are distinguished by numbers. Currently, the capa-
bility sets 1 (CS-1) and 2 (CS-2) and 3 (CS-3) are published.

Examples of CS-1 services aabbreviated dialingallows the use of short num-
bers for outgoing calls)time-dependent routin¢allows incoming calls to be
routed based on time, day, week, eteeyerse chargindallows call charges to
be allocated to the called party), call transfer(allows a call to be transferred to
another destination line).

Instead of adding new services, CS-2 identifies several service categohies. T
categories refer tinternet working servicegall party handling servicegllows

to manage various parties’ participation within a cathgbility servicesbroad-
band servicesbearer servicesand other service features outside the range of
"single ended” calls and/or calls with "single point of control” that wao fully
addressed within CS-1.

A main principle of IN is to separate the control of a call and the basic call p
cessing. Conceptually, the control of a call is given ®eavice Control Function
(SCF), whereas the basic call processing is dorfédrvice Switching Functions
(SSFs). On the implementation side, an SCF is implementedSeraice Con-
trol Point (SCP) and an SSF is implemented iSarvice Switching PoiiSSP).
The SCP is typically a fault-tolerant transaction-processing databatsertivides
call-handling information in response to SSP queries. An SSP isimghted
within a normal switch. The following description only refers t@ ttonceptual

ASN.1 and TTCN is required. It can not be assumed that a reader has expertise view, i.e., to SSF and SCF.

in all these areas. Therefore, this section provides an introduction tmalsée
important concepts of IN, SDL, MSC, ASN.1 and TTCN.

2.1 Intelligent Networks and INAP

Intelligent Networks (IN) is currently one of the most importanpits in the
telecommunications area. IN provides a complete framework for the creation,
provision and management of advanced telecommunication seAtesT (In-

2Detailed introductions to IN can be found in, e.g., [23] ap€][

Based on call characteristics like call origin or called party number, the SSF de-
tects if a call is an IN call, i.e., the call should be controlled by the SGFIR

calls, the SSF sends queries to the SCF and asks for information abcudrh
dling of the call. Depending on the IN service to be realized for the cadlrigs
have to be sent in different states of the call, and specific call informh#srio

be provided within the queries.

Within the SSF, a call is handled by means of Basic Call State Model(BC-
SMs) which are calle@riginating Basic Call State Mod¢D-BCSM) andTermi-

ISUP connection
0-BCSM ||| T-BCSM | | 0-BCsM ||| T-BCSM
DSS1 ion DSS1 connection
Switch A Switch B
Calling party Called party

Figure 1: O-BSCM and T-BCSM in SSFs

nating Basic Call State Mod€T-BCSM). The O-BCSM describes the incoming
side of a call and the T-BCSM models the outgoing side. As shownguarEil,

the calling party is connected to an O-BCSM and the called party is connected to

a T-BCSM.

The BSCMs are finite state machines and are used to control the basic eall pro

cessing within the SSF. In order to know when to send queries to an BEF, t
BCSMs include detection points (DPs). Some DPs have to be armechHyati
(trigger detection poinfsand some can be armed dynamicaky€nt detection

pointg. If an armed DP is reached during the call, the SSF knows that a special
treatment of the call is required. In most cases, the SSF has to ask the ISCF fo

further instructions. As a result of such a query, the SCP may peawégl infor-
mation, e.g., a new called party number if a call is transfered to a new distin
or force the SSF to arm a DP.

The communication between an SSP and an SCP is performed by usintgthe
ligent Network Application ProtocdINAP). INAP is defined for different capa-
bility sets and for different regions of the world. For example tdrenCore INAP
CS-2refers to the European version of INAP capability set 2 (CS-2).

INAP is normally used within CCSetworks and it is implemented within the
Transaction Capabilities PafTCAP) [15] of the CCS7 protocol stack. As shown
in Figure 2, INAP is realized on CCS7 level 4 or, with regard to the Beic
reference model [3], on the application layer (layer 7).

3CCS7 s an abbreviation for ITU-T@ommon Channel Signalling System N¢s&e, e.g., Chapter
10in [21]).

OSI Layers CCS7 levels

INAP

Application layer
PP 4 Transactions Capabilities Part

(TCAP)

Presentation layer

R, 4
Session layer

Transport layer

Signalling Connection Control Part
(SCCP)
Network layer 3
M ge Transfer Part (MTP)
Data link layer (levels 1 - 3) 2
Physical layer 1

Figure 2: INAP as part of the CCS7 protocol architecture

INAP is defined for the communication between various IN components and not
only for the communication between SCF and SSF. However, the Core O8\P

2 SDL modeling work at ETSI concentrates on the communication between SSF
and SCF.

2.2 Description techniques

For the development of Core INAP CS-2 SDL specifications and the camésp
ing test suites, the description technig&gecification and Description Language
(SDL) [11, 18],Message Sequence Ch&4SC) [25, 20],Abstract Syntax Nota-
tion One(ASN.1) [27, 16, 17] andree and Tabular Combined Notatigh TCN)

[1, 14] have been used. SDL and MSC are formal description techniques{FDT
i.e., they have standardized formal syntax and semantics definitions. 1/
TTCN are only notations. They have a standardized formal syntax definitut

the semantics is given informally. ASN.1 and TTCN are well accepted in the
telecommunications community for the definition of protocol data andoren
mance test suites.

Process CallSegment | state

Forward

——— message input

BetLegStatug
(legID,

procedure call

joined)

——— message send

A

——— State

SetupReq_
Ind
SIRArg, lediD)

Figure 3: State transition of an SDL process

SDL, MSC and TTCN have two syntactical forms: a pure textual and a graph
representation. The graphical forms are mainly used for editing purpogks
documentation. The textual forms are mainly used for the transfeagfaiins and
for code generation. Throughout this article, only the graphical reptatsems of
SDL, MSC and TTCN are used.

2.2.1 SDL

The formal description technique SDL is standardized by ITU-T as Recommen-
dation Z.100 [18]. SDL is used to specify the behavior of a systeroh Sisystem
is a collection ofSDL processewhich communicate asynchronously by exchang-

octagons refer to process definitions and the solid arrows define comniomicat
links. The dashed arrows denote dynamic process creation, e.g., i Figuo-
cessCS(0,):CallSegment may create processSF(0,):SSF_FSM. SDL blocks
may be combined to bigger blocks or to a complete system. Figure 8 ddfmes t
systemCS1_INAP. The rectangles refer to block definitions and the solid lines
with the attached arrow heads define communication channels.

SDL allows to specify systems in an object-oriented manner. For this, f#3SL

a type concept for processes, blocks and systems. These types can be reused
by means of inheritance and redefinition. SDL types can be collected in SDL
packages. The SDL Core INAP CS-2 specification makes extensive use of these
object-oriented concepts.

The SDL definition includes many additional language constructs whichotann
be introduced here. A complete language description can be found in [R)or [

2.2.2 MSC

The MSC language is defined in the ITU-T recommendation Z.120 [20UrEig

shows an example of an MSC. The diagram describes the message flow between
the instanceSCF, CS2_SSF, SigCon_A andSigCon_B. The instances are rep-
resented by vertical axes. The messages are described by horizontal arrows. An
arrow origin and the corresponding arrow head denote the sending andwgons

tion of a message. In addition to the message name, parameters may be assigned
to messages (see values in square brackets below the message arrows). The send

ing messages. The reception of a message may force a process to change its statéand receive actions along an instance axis are totally ordered. The order tsf even
During such a state transition, the SDL process may send new messagas and/ o different instance axes is mediated by the messages, i.e., a message must be

perform operations on local variables. Figure 3 presents a state tansitan
SDL process specification. If the proce3allSegment is in the Forward state
and receives the messagetupReq_Ind, it calls the procedurBetLegStatus to
perform some operation on a local data structure, sends the me3sagdeq
and goes into staferansfer.

SDL processes are combined to (sub-)systems by meaieak diagramsin a

sent before it can be received and consumed.

The rounded rectangles in Figure 4 which cover all instancelI&f@ references
They refer to the MSC®_0S andReleaseCallAB. MSC O_OS can be seen as
the prehistory of MSGN2_A_BASIC_RN_CA_01 and MSCReleaseCallAB as
its continuation.

block diagram, the process specifications are referenced and the communication Further constructs of the MSC language desdrib&ance actiongimer handling
links among the processes and between the processes and the block environmentnstance creationinstance terminatioythe order of events along an instance axis

are defined. In Figure 7 the block tyj®SF_CCF is defined. The six inscribed

(coregion), and the refinement of instance axes by mearssibfmscsindividual

MSC IN2_A_BASIC_RN_CA 01

[cs2_ssF |

| SigCon_A |

[sigc

on B |

0_os

)

[102,51,E

TC_InvokeReq

1, 51, 2, RNC, short, INC,
TC_InvokeReq

Arg : { { eventTypeCharging

2, 51, 4, CUE, medium, c|
TC_ContinueReq

UEArg : Null]

[51, oSCF]

SetupReq

'AAAA’H, monitorMode int}

errupted })]

[(callRef 2, calledPartyNy

mber '2000’H, callingPartyl
SetupCo|

umber '1000°H }]
nf

SetupResp

[{ callRef 2

[{ callRef 1 }]

ChargingEvent!

d

TC_Continuel

[{caIIRef 2,4
d

g

TC_Invokel

]

C, TRUE, eNCArg : { eve

ventTypeCharging 'AAAA’

tTypeCharging 'AAAA'H, nf

1}]

nonitorMode interrupted }]

(

ReleaseCallAB_cause_00

—

—

—

)
—

Figure 4: MSC test purpodtl2_A_BASIC_RN_CA_01

MSC sections within one MSC can be combined by mearisliofe expressions
Complete MSCs can be combined by means$ifh-level MSCs A complete
introduction to the MSC language can be found in [25].

2.2.3 ASN.1

The Abstract Syntax Notation Orf&SN.1) [27, 16, 17] is a notation for the de-
scription of structured information intended to be conveyed acrose sunrface
or communications medium. ASN.1 allows to specify structured data types
values of the specified types. By means of encoding rules, it is possibidite
how data types and values have to be implemented. The close relatioratdubé
implementation may be one of the reasons why ASN.1 is very populadirstry,
but not very well known by scientists.

The use of ASN.1 is supported by TTCN and SDL. For SDL, a special ITU-
T recommendation Z.105 [19] exists which defines the use of ASN.1 typés
ASN.1 values within SDL. INAP data types and operation calls are specified in
ASN.1.

224 TTCN

The Tree and Tabular Combined NotatigfiTCN) is defined in Part 3 [14] of
the well establishedOSI Conformance Testing Methodology and Framework’
(CTMF), which has been developed and standardized by ISO and ITU-T [13].
TTCN is a notation for the specification abstract test suitefor OSI confor-
mance testing. Abstract means that a test suite should be independernfyom
concrete implementation. A TTCN test suite consists of

e atest suite overviewrhich mainly is a table of contents of the test suite,
¢ adeclarations parwhich includes the message and data type definitions,

e aconstraints parwhich consists of conditions on message parameters, i.e.,
default values or value ranges which should be tested, and

¢ adynamic partwhich for each test case describes the sequence of exchanged
messages.

As indicated by the nam#8ree and Tabular Combined NotatiofTTCN), a
TTCN test suite is a collection of different tables. Figures 5 and 6 présent
examples of TTCN tables. They will be explained below.

TTCN has its own data type and value assignment concept. It includes wery po
erful matching mechanism® express conditions on parameter values. These
matching mechanisms are comparable with the wild cards used in UNIX shells.
For practical purposes, TTCN allows to use ASN.1 in the declarations and co
straints part.

The dynamic part of a TTCN test suite includes the test cases. A TTCN test cas
describes the sequences of events which should be performed by the testers.
general, these are send and receive everoiats of Control and Observation
(PCOs). A PCO can be seen as an interface toygtem Under TegSUT).

The event sequence is specified by means of a tree notation. Figure 5 shows an
example. The tree notation can be found in Beaviour Descriptiowolumn.

The tree structure is determined by the ordering and the indentatibe speci-

fied events. In general, events with identical indentation denote a branglen
alternative events, for example, lines 8 and 15) and an increased indenttion d
notes a succeeding event (e.g., lines 2 and 3). Events are characterized by the
involved PCOs (i.e.SCF, SigCon_A andSigCon_B), by their kind ("!” denotes

a send event and "?” describes a receive event) and by the message which should
be sent or received.

The table in Figure 5 includes further information. The entries @Qbnstraints
Ref.column refer to TTCN or ASN.1 constraints. An example of an ASN.1 con-
straint is shown in Figure 6. An entry in théerdictcolumn assigns test verdict

to a test run. The verdicts indicate the success of the test rupasaverdict
denotes that the test purpose is reachddil states that an unexpected event has
happened and anconclusivedescribes a situation where neithgrassnor afail

can be assigned. The example in Figure 5 only inclymbessverdicts (lines 10,
13, 17). Thefail cases are specified in thliefault behavior descriptio®ther-
wiseFail, which is referenced in the test case header.

TTCN allows to structure test case descriptions by usasg steps A test step
is a behavior tree which can be added to other behavior trees by meg&me of

Test Case Dynanic Behavi our

Test Case Name: IN2_A_BASIC_RN_CA 01

G oup
Pur pose

Configuration :

Def aul t : OtherwiseFail
Comment s
Nr Label Behavi our Description Constraints Ref Verdi ct Comment s
1 +0_0S
2 SCF ! TC_InvokeReq CIR_RequestNotificationCha
rging_002(1,51)

SCF ! TC_InvokeReq CIR_Continue_004(2,51)

4 SCF ! TC_ContinueReq C_TC_ContinueReq_001(

11
12

14
15

17

18

SigCon_B ? SetupReq

SigCon_B ! SetupConf
SigCon_B ! ChargingEventind
SCF ? TC_Continuelnd

SCF ? TC_Invokelnd

SigCon_A ? SetupResp
+ReleaseCallAB
SigCon_A ? SetupResp
SCF ? TC_Invokelnd

+ReleaseCallAB
SigCon_A ? SetupResp
SCF ? TC_Continuelnd

SCF ? TC_Invokelnd

+ReleaseCallAB

51)

C_SetupReq({ callRef 2,
calledPartyNumber '2000'H,
callingPartyNumber '1000'H }
)

C_SetupConf({ callRef2})
C_ChargingEventind_002
C_TC_Continuelnd_003(51
)
ClI_EventNotificationChargin
g_001(102,51)
C_SetupResp({callRef1})

C_SetupResp({callRef1})

ClI_EventNotificationChargin
g_001(102,51)

C_SetupResp({callRef1})
C_TC_Continuelnd_003(51
)

ClI_EventNotificationChargin
g_001(102,51)

(PASS)

(PASS)

(PASS)

Det ai | ed Coments:

Figure 5: Dynamic behavior description of test ci$2_A_BASIC_RN_CA 01

ASN.1 ASP Constraint Declaration

Constraint Name :
ASP Type
Derivation Path

CIR_RequestNotificationCharging_002(Invoke_ID : InvokelDtype; Dialog_|D : DialogIDtype)
: TC_InvokeReq

Comments

Constraint Value

{ invokelDtypel Invoke_ID, dialogIDtype2 Dialog_ID, opClassType3 2, opCodeType4 RNC, timeoutValType5 short,
argType6 rNCArg : { { eventTypeCharging PIX_EventTypeChargingl, monitorMode interrupted } } }

Detailed Comments :

Figure 6: TTCN constrainf®IR_RequestNotificationCharging

attachment The TTCN test case in Figure 5 includes four tree attachments. In
Line 1, the test ste®_OS is called and in lines 11, 14 and 18, the test step
ReleaseCallAB is attached to the test case behavior.

TTCN supports concurrency by allowing to execute several behavioritrgas-

allel. For this, amain test componeiiMTC) is allowed to create severahrallel

test componentdTCs). The test components can coordinate themselves during
test execution by exchangimgordination messagefor the exchange of coordi-
nation messages, the same notation as for normal messages is used.

2.3 Tool support

The combined use of SDL, MSC, ASN.1 and TTCN stands and falls with the
availability of powerful tools. Within ETSI, the Tau package is us28][How-
ever, other tool sets provide comparable functionality. As an altem@tdl chain,

we would like to mention ObjectGEODE for the SDL/MSC side [30] di¢+
PERT*TTCN [8] for the TTCN side.

Tau contains two tool sets: SDT on the one hand consists of SDL- and MSC
related applications (including support of the combined use of SDL &5id.A
according to [19]); ITEX on the other hand is used to work with TTCN seites
(including support for the use of ASN.1 within TTCN). Tau prdes graphical
editors, syntax and semantic checkers, code generators (for several target pro
gramming languages), and simulation and validation tools for all afttetioned
description techniques.

2.3.1 Graphical editors and SDL simulator

Graphical editors provide functions to edit and analyze SDL, MSC and TTCN
specifications. An SDL specification can be translated into a simulator and a
validator application. The SDT simulator provides the possibgitio follow a
simulation run by means of an MSC, or by "highlighting” the SDL syhlvhich

has been executed last in the SDL editor. For further analysis or reusetireano
context, a simulation run can be stored in form of an MSC.

2.3.2 The validator

The validator is used to detect dynamic and logical errors in an SDL system.
Some of the potential problems are deadlocks, implicit signal consonshand
the sending of signals to non-existing processes.

The Validator is based on state space exploration techniques [12]. atkespaice
of an SDL system is built up in the form of a directed graph, caltsthability
graph The reachability graph describes the behavior of the SDL system.dé&sno
correspond to global system states and its edges represent the trahstisesn
global system states. During validation, the reachability graph is analyzed
example, a deadlock is found if a node in the graph does not have anyiroytg
edges.

Verification of an SDL specification against its requirements is one mairoparp

of the Validator [9]. Most requirements can be expressed in form of MEC d
agrams. The Validator explores the state space and searches for a path in the
reachability graph complying to the MSC which is checked. The MSg@isied

if such a path exists.

2.3.3 Autolink

Autolink [10, 22, 26] is part of the SDT validator. The objectivefaitolink is
to provide an easy-to-use yet powerful tool to generate TTCN test $rot@san
SDL specification. Potential users are engineers who have a good undiergtand

4SDL processes are allowed to discard signals which arevestéut not explicitly expected in the
actual state.

of the system they have specified, but who do not have detailed knosvledg
TTCN. Specialized test suite designers also benefit from using Autoliiey
can concentrate on the correct description of test purposes while leaging ti-
prone task of writing TTCN code to the tool.

Test generation with state space exploration

Autolink uses the state space exploration techniques and the MSC vagificat
mechanism provided by the SDT validator. The generation of a TTCN tesiscase
based on @ath In the Autolink context, a path is defined as a sequence of events
which have to be performed in order to go from a start to an end state stdke
space of the SDL specification. The externally visible events of a pattrides

the test sequence to which a TT@idssverdict is assigned.

Autolink uses a modified version of the MSC verification algorithm tmpate

all relevant transitions in the state space. Each transition is analyzedtsEven
which are visible at the environment are added to an internal data strudiicte
represents a test case. If an event satisfies the MSC, it is addezhassxent; if

it violates the MSC, it is added as arconclusiveevent. Additionally, a constraint

is created for every visible event.

After the generation of all test cases, the test suite can be translatedditd@N
format. The declarations part is deduced from the SDL specification; the con-
straints and dynamic part are a translation of the Autolink internal skaticture.

The production of the TTCN overview part can be done afterwards bygusin
TTCN tool like ITEX.

Direct translation of MSCs into TTCN

In order to use a state space exploration to generate test cases from M8@s, a
plete SDL specification is required. However in the real (standardizatiorijiw
only partial specifications exist for most systems; often there is no §iecifi-
cation at all. Standardized protocols like Core INAP CS-2 (Section 3) ¢dreno
specified completely, e.g., error handling or charging functions remapegifed
or are specified partially. Nonetheless, to guarantee a uniform test suiog-
ment processll test purposes can be formalized as MSCs.

Autolink supports the processing of manually developed MSC tegtgses by
providing a function which translates MSCs directly into TTCN (MSTTCN
translation). Although it does not perform a state space explorafiatolink
performs some static semantics checks.

For this, information information about the interface between theesysnd its
environment is needed. Hence, a minimal SDL specification has to be provided
which defines at least the channels to the environment, i.e., the PCOs,eand th
signals which are sent via these channels.

Constraint handling

Basically, a constraint with a generic name is created automatically for emedy s
and receive event in all test cases. Considering the readability of a tesst suit
this is far from being optimal. Therefore, Autolink includes a speciakt@ant
description language. By defining rules in a configuration file, the teggmiss
can control the naming and parameterization of constraints.

If several test cases are processed consecutively, a lot of constraints are created.
Autolink detects and merges identical constraints. As a result, the nuohber
constraints is reduced significantly.

3 The Core INAP CS-2 SDL model

In this section, the working method for the development of the Q¥AP CS-2
SDL description and the SDL specification itself are explained.

3.1 Working method

IN is standardized by ITU-T within Study Group 11 (SG 11). The rafg\stan-
dards are the Recommendations Q.1211-Q.1215, Q.1218-Q.121%#trand
Q.1221-Q.1225, Q.1228-Q.1229 for CS-2. The ITU-T INAP speaifons can

be found in the Q.12X8 Recommendations. For the European telecommunica-
tions market, the ETSI Technical (Sub-)Committee SPS3 selects an | stsutis
adds specific European requirements.

The ETSI work on the Core INAP CS-2 SDL model started in the midélE995.

It was done in close cooperation with ITU-T SG 1 The goal of the work was to
develop a high quality standard which can serve as a basis for validatidestnd
generation, in less than two years.

which consists of more than 450 pages of SDL diagrams. ETSI publisbezl C
INAP CS-2 as European Norm (EN) in May 1999. The corresponding ITU-T
INAP CS-2 SDL specification was published in Spring 1999. In bothdsteds,

the SDL description is a normative annex with the same status asxthealtde-
scription. As already mentioned by Dave Rayner in [24], the developofdahe

To reach these goals, it was decided to use ASN.1 as data description language|NAP CS-2 SDL description was a breakthrough for the use of SDLandzrd-

and SDL as specification language for the protocol behavior. Core INAR CS
should be developed in an object-oriented manner. As a result, Core O$AP
was developed first and Core INAP CS-2 was modeled on the basis of Cake IN
CS-1 by using the SDL mechanisms of inheritance, virtuality and redefinit

The modeling work was mainly done by a group of voluntary expexsfr
British Telecom, France Telecom, Ericsson, Siemens, Alcatel, Hewlett Packard
and Nokia. The group met approximately one week per month at ETSI. The wor
was supported by an SDL specialist of the ETSI PEX group and resourees fro
ETSITC MTS.

ization.

3.2 The SDL specification

Core INAP CS-2 is not a symmetrical protocol. It is used for the compation

of different IN components, e.g., SSF, SCF or SRF, with differenttions. One
would expect different INAP standards for different IN components, BBU$|

and ITU-T decided to develop one INAP specification for the SSF only. The
reason is simple: In an IN-based netw@rthe SSF has to be implemented on all
switches, whereas only a few SRF or SCF entities are needed. Thereforestor mo

The modeling work was based on U.S. requirements. As a consequence, a closetg|ecom operators and manufacturers, the SSF has higher priority thathéme o

working relationship with BellCore was set up. The work was strgetim such a
way that the INAP experts concentrated on the protocol requirements arnidgao
their intentions to the SDL specialists in form of informal SDL. Thi®rmal SDL
was formalized and the result was discussed and reviewed by the whofe grou

Further input on problems and errors was given from the experts gvbigh de-
veloped the Core INAP CS-2 conformance test suites. The test sugodavent
by means of CATG techniques started in February 1997, i.e., in paralled tagh
phase of the Core INAP CS-2 definition. On the one hand, the wotkeofest

components.

As described in Section 2.1 and shown in Figure 1, an SSF handles a call by mean
of two BCSMs, i.e., the logic of a call is structured into tialf-calls Figure 7
presents the half-call structure of the Core INAP CS-1 specificatioa.pfbcess
references for originating BCSMD(BCSM) and terminating BCSMT_BCSM)

can be found at the bottom of the block diagram. They are dynamically created
and depending on the role of the half-call, either@BCSM or a T.BCSM

is created. Figure 7 also includes references to the procidsafstype Inter-

development group lead to changes and corrections of the SDL specification. On face_Handler, CSA of type CallSegmentAssociation, CS of type CallSeg-
the other hand, changes of the SDL specification required some reassessment ofyyent andSSF of type SSF_FSM.

the test development group. There is no doubt that the mutual influerbe
two groups of specialistshelped to improve both the SDL specification and the
corresponding TTCN conformance test suites.

The result of the entire modeling work is the SDL Core INAP CS-Zdpton

5Please note, the INAP CS-2 models of ITU-T and ETSI SDL arfewint, although their devel-
opment started at the same time with experts contributirmpto organizations.
51t should be noted that only one expert was member of bothpgrou

ThelH is a permanent manager of the call control function of the CS-1 half-call
view. When the simulation of the SDL specification starts, ltids the only
process of a half-call that exists. During a call setup and after having egteiv
the appropriate messages from the half-call environmeniHhmeates aCSA.
ThelH is modeled in such a way that it is able to handle half-calls from several

7IN-based means that an IN architecture is used. Some tefeoaination services described in
IN standards can still be implemented in a conventionalrenwent, i.e., without IN architecture.

SigCo|

N (CSL_INAP_To_SCF)|
SCH

(CSl_INAP_From_SCF)]

Virtual Block Type <<System Type CS1_INAP>:

L)

[(CSUNAPJLSC

SigCon_Interface

, Sig_
(sig_| lksig_ [(SigConiout)] [(sigCOan)] Con |H(1,1): IBI
CSEIT) CIcr)1r)L Mgt_SetTriggerTabl Interface_
- iy [Mot_SetTriggerTg KJGEHaAndIer
MGT Management : ¥S
Mgt_Set| :
{Trigger_ } [(CSA,OU@
Table
CSA_Interface
[(CSA_m)]
CSA(0,):
CallSegment_ IH
Association
CsS
(CSiout)]
CS_Interface
(CSiln)]
CSA Y.
Cs(0): SSF_lInterface
CallSegment SS
csLssEOut)I(csLssUn
{(OﬁBCSM } [(TﬁBCSMfOut)}
Out)
[(O_BCSM I
(TﬁBCSMfIn)]
CSs Cs
O_BCSM(0,): T_BCSM(0,):
Originating_ Terminating_
BCSM BCSM

1(6)

SSF/CCF is in line with Q.1228 (

/* Note: The functional architecture of the
CS-2) and not Q.1218 (IN CS-1),

*Z

IBI_Interface IBI

[(IBI)] [(IBI)] [(|3|)] [(IBI)j

SSF(0,):
CcS SSF FSM

Figure 7: Core INAP CS-1 SSF half-call view

calls. Besides the creation GfSA processes, thiH handles the dialogue with

the SCF (vie&SCF _Interface), manages the dialogue with the other half-call view
(via IBl_Interface) and passes messages between the signalling control interface
(SigCon_Interface) and theCSAs.

A CSA manages the creation of call segments, €& processes, and the dialogue
with thelH. A CS creates ai$SF and anO_BCSM or aT_BCSM. Furthermore,
the CS is responsible for the filtering of detection points (see Section 2Ah)
SSF process manages the processing of IN operations., i.e, it sets detectits poi
and extracts/stores call information. Furthermore, it is resporfsibibe handling

of detection points, i.e, it controls the arming and disarming of detegqtoints.

For modeling the complete SSF behavior of a switch, two half-call sibave

to be combined. This is done in Figure 8. The blo&SF_CCF_A and
SSF_CCF_B are instances of th8SF_CCF block type shown in Figure 7. Ad-
ditionally, Figure 8 includes a third block instance callgdAP_Adapter of type
TCAP_Simulator. The reason for this block has been explained in Section 2.1.
Within a CCS7 protocol architecture, INAP is normally implemented gnab
TCAP. This means that on a standardized interface at the SCF side, INAP prim
tives are encoded in TCAP messages. In the model this encoding is done by th
functionality of theTCAP_Adapter block.

The Core INAP CS-1 system in Figure 8 has five interfaces to the emagnh
SCF, SigCon_A, SigCon_B, Management_A and Management_B. The ex-
change of INAP primitives within TCAP messages is performed at inteB&de
The interfaceSigCon_A andSigCon_B are abstract signalling control interfaces.
They are used to handle the calls itself. In a real-world implementatim, an in-
terface is connected either to another switch (via SS7) or to a terminal 884
The interface$lanagement_A andManagement_B have no counterpartin real-
ity. They are used to set the system into states which cannot be reachedraf nor
message exchange at the other interfaces. They can be compared with some sort
of operator terminal at a switch.

Up to here, only the Core INAP CS-1 part of CS-2 has been described. CS-1
services can be characterized by the property that they are applicable to "single-
ended” calls and/or calls with "single point of control” only. This meémet in

one SSF, only two half-calls can be involved in a call. Services where rhare t

System Type CS1_INAP

L)

(TCAPtoSCF),
(TCAP_IH_Errors)

behaviour of the TCAP service at the
SCF side, i.e. the endpoint of the SCF
channel is the interface SCF <-> TCAP. */

1(8)

/* The SSF consists of two half call views,
SSF/CCF-A and SSF/CCF-B.

Notes:
- The functional architecture is in line with

Q.1228 and not with Q.1218.
- Only the behaviour at the SCF channel is normative.

TCAP_Adapter:TCAP_Simulator

A_Side

SCF All other information is informative.
/* Note: The TCAP Adapter models the
/* Note: The Managementinterfaces are informative
interfaces, they model the possibility of static trigger
table manipulation. */
[(TCAPfromSCF)]
SCF_Side

B_Side

[(CSlfINAPiTtLSCF)]

CS1_INAP_A

[(CSl_INAP_From_SCF)]

Management_A

[MglﬁSetTriggerTab e]

SCF

SSF_CCF_A: IBI

[(CSI_INAP_TO_SCF)]
CS1_INAP_B

[(CSI_INAP_From_SCF)]

SCF

- SSF_CCF_B: Management_B

MGT SSF_CCF 1Bl [(lsl)]

SigCon

{(Sigcan_ln)}

SigCon_A

’[(SigConiout)]

[(IBI)] SSF_CCF

SigCon MGT [Mgt_SetTriggerTable]

{(SigCon_ln)}

SigCon_B

[(SigConiout)]

Figure 8: Core INAP CS-1 system diagram

two parties are involved, cannot be realized in CS-1. Therefore, the ma&n-ext
sion in the SDL specification of Core INAP CS-2 to CS-Tal party handling
(CPH), i.e., the possibility to handle services with more than tamigs involved.

For CPH, multiparty calls have to be made visible to the SCF. Thidone by
introducing the abstracbnnection viewFrom the perspective of call-related sig-
nalling, the connection view is a half-call view. That is, eacl kefga multiparty

call is associated with a BCSM. In a multiparty call, a leg can have thesstatu
joined, pending sharedor surrogatedand it may have @&ontrolling or passive
role in the callP®

In CS-2, connection view statefor multiparty calls are defined by the legs in-
volved, their status and their roles. CS-2 provides operations to clihegtate
of a multiparty call by using the connection view abstraction, i.e. oiberations
refer to connection view state changes.

Figure 9 shows the SSF half-call view of the Core INAP CS-2 SDL sjpation.
Compared to Figure 7, the structure does not change much. The CS-dahalf

view is reused and the processes are redefined. In most cases, the redefinitions

add behavior to the processes in order to handle the additional CS-&ioper
The connection view handling as described above is performed I§8hEocess.
TheCS handles the legs and is responsible for the processing of connedion vi
oriented IN operations.

4 Test generation for Core INAP CS-2

For the understanding of the test generation procedure, it is necessaayeto h
some basic knowledge about the relation between the SDL specificationeand th
test architectures for which the test suites are developed. This is exgblaithe

first part of this section. Then, the test suite development procesieslained,

and finally, the test suites are described.

8Legs and half-calls are not exactly identical, but for theenstanding of this paper we can assume
that they are similar.
9A multiparty call can only have one controlling, but sevgratsive legs.

MTC_SCF

SCFT(CSZJNAPJ‘LSCF)} SigCon_A CCFD 60@ SCF GFD SigCon_B

(CSZilNAPiFromfscF)]
Redefined Block Type <<System Type CS2_INAP>> SSF_CCF 1(4) PTC A PTC B
D TCAP/INAP
[(cs2_INAP_To_SCF)] A_PCO GC@ GC@ B_PCO
SCF2_Interf
e e | dSm |
SigCor SigCon2_Interface 'SigCOn lsHCF - : 1BI2 Bl
FA%&)_} [(Sigcon2_oun] - [(Sigconzm] - gy . 2] [ce2] E'B'Z% Figure 10: Core INAP SSF test configuration for a two party call
Ouwy) (| (1BI2)
(Sig_
{Cﬁ?z— [(csn2_ouy] .)
R I S— CSA2 Interface 4.1 Multi-party testing context and Core INAP CS-2
entities defined in the
IN CS-1 SDL specifica- | [(CSAZ_'”)J
- The functionaliy and H - The conformance test suites for Core INAP CS-2 are written fouli-party con-
e extendod 10 mcorpo- CSA text The multi-party context is one of thabstract test methodtefined in CTMF
fanctonaity. o~ cs [13]. An abstract test method is an implementation-independent desarigt
(cs2_oup| test configuration. Test cases for the multi-party context are specifiedibyg u
CSZ_In}terface concurrent TTCN (see last paragraph of Section 2.2.4).
(CS2_In)
"""" CSA ' : Figure 10 shows a Core INAP SSF test configuration for a two party Takre
SSF2_Interface .
cs p— ‘(SSFz CS Ssk are three test componentd TC_SCF, PTC_A andPTC_B), which control and
o T Lom) ‘} Lun) |- observe thesystem Under Te¢B8UT) via standardized interfaces. The TCs de-
scribe protocol peer entities of entities which reside within the SB&.standard-
ized interfacesCF, A_.PCO andB_PCO in Figure 10) are used as PCOs. They
[(_8esm2_ou] o BeSM2 T Besun [(7_Besm2_ow)] are realized by using standardized communication services. In our case, these
[©0_Bosmz_in)] - - (T_BCSM2_In)] services are provided BYCAP, ISUPand/orDSS1
cs . cs . . .
o BeSM T Besw The Core INAP behavior of the SSF is controlled and observed via TBAP
- ‘ - MTC_SCF at PCOSCEF. As indicated by the nam&JTC_SCF is the main test
component in this test configuration and plays the role of the 8TE_A and

PTC_B are parallel test components. They manage the call signalling. Depending
Figure 9: Core INAP CS-2 SSF half-call view on the configuration of the SSF, each of them either plays the role of atdron

the role of another switch. In case of a switch, ISUP is used for the corwation

with the SSF; in case of a terminal, DSS1 is used.

As a consequence, four different variants of the same Core INAP testagaite
needed. The different variants are the result of the two different rotasBPoC_A
andPTC_B, may play*®

However, ETSI does not provide different variants of the same Cofd°Iiést
suites. Instead, Core INAP abstracts from the concrete ISUP and DSSagmess
flow by introducingabstract signalling control messag@shich are exchanged
at abstract signalling control interfacesIn Figure 8, these abstract signalling
control interfaces are represented by the charBigiSon_A andSigCon_B. In a
concrete test implementation, the abstract signalling control messageohay
mapped to ISUP or DSS1 messages by the PtCs.

The functionality of the PTCs is reduced to simple mapping functisimee the
MTC and PTCs coordinate themselves by exchanging the abstract sigmalting

trol messages: A PTC reports the reception of ISUP or DSS1 messages by send

ing the corresponding abstract signalling control messages to the M@G/TC

tool which has been used for the Core INAP test suite development wasirkut
(Section 2.3.3).

A group with experts from Siemens, Alcatel, Telefonica and the Uniyeodit
Lubeck was set up. Additionally, a permanent expert of the ETSI PEXmro
joined the experts group. The permanent expert was also a member of the SD
modeling group and, therefore, was responsible for the communicatiarebn

the modeling group and the test experts.

The test suite development for Core INAP CS-2 by means of computer tsied
generation methods required knowledge of IN, IN testing, Core INBR, MSC,
TTCN, ASN.1 and CATG tools. None of the experts had deep knowledgléadr
these areas. Therefore, during the work sessions, a lot of communibatiseen
the experts was required.

The experts team developed three test suites: one for the CS-1 fualityion

forces a PTC to send ISUP or DSS1 messages by sending the correspording ab Within CS-2, one for CPH and one for SRF. The test suite developprecedure

stract signalling control messages to the PTC. This means that the SRirsin
Figure 8 specifies the mirror behavior of the MTC shown in Figure 10

The test architecture in Figure 10 describes the situation for two palfyonly.
For CPH in Core INAP CS-2, multiparty calls have to be handled as wall.
the abstract test architecture, further PTCs, CPs and PCOs have beendettod
Similar to the situation above, the test suite for CPH only inclutlesMTCs of
the test cases.

4.2 Test suite development working procedure

The purpose of the SDL model was not only to provide a firm basith®iNAP
standard (Annex A of [5]), but also to facilitate work in other areas. Hi&&
particular interest in test case generation. The expectation was that thtmugh
use of advanced tools, the development of a test suite could be sadplifihe

10please note, the objective is to test Core INAP and not ISUPS$81. The different roles of the
PTCs have no influence on the TCAP/Core INAP interface.

1170 the knowledge of the authors, some telecom operators defiged a mapping of ISUP and
DSS1 messages to abstract signalling control messagethibuatapping has been done for internal
use only and has not been published officially.

was almost identical for all test suites. It was structured into three phases
Identification and development of test purposes, test generation and manual
post-processing of the test suite.

4.2.1 ldentification and development of test purposes

The development of conformance test suites at ETSI is oriented on t@stg@s:

A test purpose describes a part of the behavior of a protocol for whista
case has to be developed. In a first step, test purposes are specified ilyformal
Afterwards the informal test purposes are formalized by means of MSCs.

Based on the Core INAP CS-2 protocol requirements, the test purpesesden-
tified manually and documented in tables which structure the informal #ext
shown in Figure 11, the table entries may refer to pre- and postamblesibges
the pass criteria and may provide further information.

Then, MSCs were created for all test purposes. Whenever possible, thismas d
by simulation of the SDL specification of Core INAP CS-2. An advantage o
creating test purpose MSCs by simulation is that the consistency betheéan

| IN2_A_BASIC_RN_CA_01

Purpose: Test of RequestNotificationChargingEvent base procedure
Requirement ref
Preamble: 0.0S

Selection Cond.
Test description

SCF sends RequestNotificationChargingEvent invoke to SSF
containing mandatory parameters only, with:
- ChargingEvent

eventTypeCharging,

monitorMode (interrupted)
After triggering of charging event from SigCon_A, check that SSF
sends to SCF an EventNotificationCharging with the indication of
eventTypeCharging
ReleaseCallAB

Pass criteria

Postamble:

Figure 11: Informal test purpose descriptidi2_A_BASIC_RN_CA_01

formally developed test purposes and the protocol is guaranteed. A nafhber

errors in the informal test purpose descriptions were detected witimtéihod.

Since the SDL specification of the Core INAP CS-2 protocol does notdiecl
error handling and due to standardization politics, some of the gubtonctions

are only specified rudimentary. The MSC test purposes related to thesegirot

aspects were specified manually in order to apply the direct M$TCN trans-
lation feature of Autolink. However, these manually generated MSC tegbpas
look like the ones created by simulation.

The MSC test purposes provided the input for the Autolink tool aede also
included in the test purpose document [6]. The inclusion of the MB&s a
requirement from organizations which do not use TTCN for testingwiich
need a formal description of each test purpose.

Figure 4 shows an MSC which formalizes the test purpose of FiguréHeMSC
refers to the preambl®_OS and the postamblReleaseCallAB, which are also
described by MSCs.

During the development of the MSC test purposes, the SDL specificaitioore
INAP CS-2 and the test purposes were validated also. As a result, thejgiol-

of the SDL specification and some of the already developed MSC test putpses
came invalid. In order to detect invalid MSCs after each change of the SDL model,
all MSC test purposes which had been developed by simulation were regdlidat
against the SDL model. This was done automatically overnight or at weekgnds
using a shell script. Due to the complexity of the SDL model, thalasibn of all
MSCs took some time. To reduce it, MSC test purposes were validatedalhgbar

on several computers.

4.2.2 Test generation

Figure 12 presents the test generation procedure from the perspedtivetobl.

The Core INAP SDL specification was developed by the SDL modeling group
The test purposes (or paths in the Autolink terminology) in fofnM&Cs had

been developed by the test experts group. Additionally, the test texgefined

an Autolink configuration file. This configuration file included validabptions

for test cases which had been generated by a state space exploration and defined
the rules for the constraints handling, i.e., naming and parameterizBased on

these inputs the test cases were calculated.

State space exploration was performed by Autolink to generate TTCN test cas

for the MSC test purposes created by simulation. The manually specified MSC
test purposes were translated directly into TTCN code. Apart from thenfaictite

test cases related to the manual MSC test purposes do not include event sequences
leading to arinconclusiveverdict, all TTCN test cases look very similar.

4.2.3 Postprocessing of the testsuite

The TTCN output needed postprocessing, because the Autolink vergdn a
able at that time did not support concurrent TTCN, test suite parameienibst
means ofProtocol Implementation Conformance Statement/Protocol Implemen-
tation eXtra Information for Testin¢PICS/PIXIT) and timers. The PICS/PIXIT
parameterization and the change to concurrent TTCN, i.e., the specificatest of t
configurations, the declaration of CPs and the definition of coordimaiessages,
were performed automatically with a shell script operating on the TT@\Tihe
timers were introduced manually. The result was analyzed for consistency by

fication had to be corrected and modified several times. This changed the hiehavio using TTCN analyzers and semantics checkers.

/ Specify system

User

Define paths

Define
configuration

Generate
executable

<

/

v

Y

. Autolink

Compute test

cases

»

Translate MSCs g

into test cases|

<

Y v

<

Generate TTCN

/ ITEX \

Generate test
suite overview

Load TTCN MP

/

file

Figure 12: Test generation procedure

A test case after post-processing is shown in Figure 5. This test cdmerissult
of a direct MSG-TTCN translation of the MSC test purpose presented in Figure
4. The corresponding informal test purpose description is showigure 11.

Figure 5 defines the MTC of the test cdb2_A_BASIC_RN_CA_01. The send
and receive events in tHgehaviour Descriptiortolumn of Figure 5 refer to the
PCOSCF and the CP§igCon_A andSigCon_B.

A TTCN expert might be a little bit confused by looking at the MTC dastion,
because the creation of the PTCs is missing. The creation of PTCs jsauified,
because the PTCs are not defined in the test suite. For the test case implement
tion, the consequences of using generic names or omitting the create ststemen
are the same. In both cases, the test case description has to be modifiedynanuall

4.3 The Core INAP CS-2 test suites

Three conformance test suites have been developed for Core INAP CSTAER]
are discussed in this section.

4.3.1 CS-1 functionality within CS-2

The first conformance test suite developed by the ETSI experts grasiphie
objective to test the Core INAP CS-1 functionality within Core IRAS-2. In
total, 126 test purposes were specified [6]. For 67 test purposes, t8e btthild
be simulated in order to produce the corresponding test cases by w@mgsace
exploration. The remaining 59 MSC test purposes had to be specified dyanual
and translated directly into TTCN due to unspecified parts in the SDL model

The test suite resulted from a repetitive process of SDL/MSC refinenagiats
modifications, MSC verifications and test generation runs. For statigtigal
poses, some MSC verification and test generation runs were performed at the
University of Lubeck. The test results discussed below were obtaineidh
ULTRA 2 workstations with two 300 MHz processors.

The time needed for the verification of an MSC ranged from 1 min24sec to
2h15min. It took between 6 min 44 sec and 51 h49 min (= 3109 min) to gener
a test case.

The larger amount of time needed for test generation is not surprisingndp

4.3.3 Core INAP CS-2 SRF test suite

MSC verification, a path in the state space graph is truncated as soon as an event

in an SDL transition conflicts with the MSC. During test generatioe, plath
needs to be extended until an observable event occurs.

Verification of all MSCs on a single machine would have taken about a day; g
eration of all test cases would have taken about a week. Therefore, the prgcessin
of test purposes was distributed among up to fifteen workstations.

With regard to the whole development process, the time effort foatftual test
generation was not relevant. Most time was spent on refinements of the SDL
specification and the test purposes.

For the Core INAP CS-1 test suite, the relation between the numbertafaess

and manpower spent was one test case per man-day. This includes the develop
ment of the test purposes, the set-up of the whole working proceduhe be-
ginning of the test suite development, manual post-processing ¢é¢h suite and

the production of all documents. In total, ETSI estimates that about &Q#te
expenses for the development of the Core INAP CS-1 test suite lemredaved

by tool support in comparison with manual test suite development.

4.3.2 Core INAP CS-2 CPH test suite

The objective of the second Core INAP test is to test CPH functionafityhe

SSF. In total, 120 MSC test purposes were defined. 107 MSC test pugmsds

be simulated and 13 MSC test purposes were specified manually. All test pur-
poses were developed by three experts within two weeks, i.e., 30 manAthys
ditionally, 10 man-days were needed for the setup of the test generatichef
post-processing of generated test suite and for the documentation.

However, the relation between the number of test cases and manpower spent was
three test cases per man-day. There are several reasons for this impresdive res
The working procedure was known and the experts could use their erperi

from the CS-1 test suite development to optimize their work. Funtiore, the

SDL model was much more stable due to the corrections which had been made
during the CS-1 test suite development. Only a few errors in tHespiBcification

were detected and corrected during the development of the CPH test suite.

The third test suite checks the INAP connection with an SRF. The tdstn-

sists of 33 test cases. All MSC test purposes were defined manually andtthe tes
cases are the result of direct MSATCN translation. The whole test suite in-
cluding postprocessing and documentation was developed in 20 man-days.

5 Summary and outlook

Core INAP CS-2 is the first protocol in standardization historyvitrich a for-

mal SDL specification has the same normative status as the textual descripti
Furthermore, Core INAP CS-2 is the first protocol for which the esponding
standard conformance test suites have been developed based on CATG methods
for SDL specifications and MSC test purposes.

Core INAP CS-2 is a good example to show that formal description teuba
like SDL and MSC are applicable to complex real-world systems, if tmeoath
interworking with well established techniques like TTCN and ASN.1uargn-
teed. The developed SDL specification is also used outside standardinatibe f
evaluation of service logic, as a tutorial, for the development ofnse tests and
as a basis for product design.

The next step in the IN development is CS-3. It was decided that Cor® INA
CS-3 (ETSI) and INAP CS-3 (ITU-T) should be identical. A Core INSS-3
SDL specification is under development at ETSI. The corresponding téss$ su
will also be generated automatically.

Acknowledgements

The authors would like to thank Stefan Heymer, Beat Koch and Michael Schmitt
for proofreading and valuable comments on earlier versions of this article.
References

[1] B. Baumgarten, A. GiesslefOSI conformance testing methodology and
TTCN Elsevier, 1994.

[2] R. Braek, O. HaugerEngineering Real Time SysterRsentice-Hall, 1993.

[3] U. Black.OSI : A Model for Computer Communications StandaRtentice-
Hall, 1991.

[4] Cinderella AB.Cinderella SDLht t p: / / www. ci nder el | a. dk

[5] European Telecommunications Standards InstitBES| Core INAP CS-2;
Part 1: Protocol SpecificatiorDraft European Norm (DEN) 03038-1, ETSI,
1998.

[6] European Telecommunications Standards InstitBES| Core INAP CS-2;

Part 3: Test Suite Structure and Test Purposes specification for Service

Switching Function (SSF), Specialized Resource Function (SRF3arvice

Control Function (SCF)Draft European Norm (DEN) 03038-3, ETSI, 1998.

[7] European Telecommunications Standards InstitBES|I Core INAP CS-2;

Part 4: Abstract Test Suite (ATS) for Service Switching Functi@r{SSpe-

cialized Resource Function (SFR) and Service Control Function (S&jt

European Norm (DEN) 03038-4, ETSI, 1998.

[8] Expert TelecomsTTCN*EXPERT product description

http://ww. expert-tel econs. com

[9] A. Ek. Verifying Message Sequence Charts with the SDT Validdtor
SDL'93: Using Objectgeditors O. Feergemand, A. Sarma). North-Holland,
1993.

[10] A. EK, J. Grabowski, D. Hogrefe, R. Jerome, B. Koch, M. Schrifigtvards
the Industrial Use of Validation Techniques and Automatic Gesteration
Methods for SDL Specificationis: SDL'97 : Time for Testing — SDL, MSC
and Trenddgeditors: A. Cavalli, A. Sarma). Elsevier, 1997.

[11] J. Ellsberger, D. Hogrefe, and A. Sarrs®L — Formal Object-oriented Lan-
guage for Communicating Syster®sentice-Hall, 1997.

[12] G. J. HolzmannDesign and Validation of Computer ProtocoRrentice-
Hall, 1991.

[13] ISO/IEC.Information Technology — OSI — Conformance Testing Method-
ology and Framework — Parts 1-I80, International Standard 9646, 1994 -
1997.

[14] ISO/EC.Information Technology — OSI — Conformance Testing Method-
ology and Framework — Part 3: The Tree and Tabular Combined tiota
(TTCN) International Standard 9646-3, 1997.

[15] ITU-T Rec. Q.771-775 (1993Bignalling System No. 7 — Transaction Ca-
pabilities Geneva, 1993.

[16] ITU-T Rec. X.680-683 (1997)nformation Technology — Open Systems In-
terconnection — Abstract Syntax Notation ONE (ASNGEneva, 1997.

[17] ITU-T Rec. X.690-691 (1997)nformation Technology — ASN.1 encoding
Rules Geneva, 1997.

[18] ITU-T Rec. Z.100 (1996)Specification and Description Languaf@DL).
Geneva, 1996.

[19] ITU-T Rec. Z.105 (1995)Specification and Description Language (SDL)
combined with Abstract Syntax Notation One (ASNGBneva, 1995.

[20] ITU-T Rec. Z.120 (1996 Message Sequence Ch1tSC). Geneva, 1996.

[21] G. C. Kessler, P. SouthwickSDN : Concepts, Facilities, and Services -
Third Edition McGraw-Hill, 1996

[22] B. Koch, J. Grabowski, D. Hogrefe, M. Schmigutolink — A Tool for Au-
tomatic Test Generation from SDL SpecificatidPiceedings of "Workshop
on Industrial Strength Formal Specification Techniques (WIFT’98)’ obet
21-23, Boca Raton, Florida, 1998.

[23] T. Magedanz, R. Popescu-Zeletintelligent NetworksInternational Thom-
son Computer Press, 1996.

[24] D. Rayner.Future Directions for Protocol Testing, Learning Lessions from
the Past Testing of Communicating Systems, vol. 10, Chapman & Hall, 1997.

[25] E. Rudolph, P. Graubmann, J. Grabowskitorial on Message Sequence
Charts (MSC-96)Forte/PSTV'96, Kaiserslautern, October 1996.

[26] M. Schmitt, A. Ek, J. Grabowski, D. Hogrefe, B. Kochutolink — Putting
SDL-based Test Generation into Practidesting of Communicating Sys-
tems, vol. 11, Kluwer Academic Press, 1998.

[27] D. SteedmanAbstract Syntax Notation One (ASN.1): The Tutorial and Ref-
erence Technology Appraisals, 1990, Reprint with corrections 1993.

[28] Telelogic AB.TAU product descriptiorht t p: / / www. t el el ogi c. se
[29] J. Thornerlntelligent NetworksArtech House, 1994.
[30] Verilog SA.ObjectGEODEht t p: // www. veri |l og. fr

