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Abstract

The development of the Core INAP CS-2 standard and the correspondingconfor-
mance test suites by expert teams at the European Telecommunications Standards
Institute (ETSI) are historical breakthroughs for the use of SDL and MSC within
the international telecommunications standardization process. For the first time,
the textual description of a standard has no priority over the corresponding SDL
specification. The power of a standard SDL specification has been shown by the
successful application of computer aided test generation methods for the produc-
tion of the necessary standard conformance test suites. This paper introduces the
Core INAP CS-2 protocol specification and describes the test generation proce-
dure.
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1 Introduction

With a complete SDL model for the European version of the Intelligent Network
Application Protocol (Core INAP), the European Telecommunications Standards
Institute (ETSI) is exploring new grounds. Traditionally, the specifications pub-
lished by ETSI have used SDL [18] only in an informal and illustrative way. This
has advantages and disadvantages. The advantages are, e.g., that compared to for-
mal specifications, informal descriptions are more understandable and require less
development time. Disadvantages are, e.g., that the specifications are not machine
processable and sometimes include ambiguities.

The SDL work for Core INAP at ETSI was done in the Technical (Sub-)Com-
mittee SPS3 (TC SPS3) on a voluntary basis with support from the Permanent
Expert Group (PEX) at ETSI and the ETSI Technical Committee Methods for
Testing and Specification (TC MTS). Unlike other SDL models for INAP, the
ETSI model has been done as part of the standardization process and is published
together with the standard as a normative (electronic) annex [5].

Reasons for ETSI to develop the Core INAP SDL specification have been the
facilitation of service development, feature interaction studies, switchdesign and
test case generation. Traditionally, the development of test suites for conformance
tests of standardized protocols has been a major activity of ETSI. Unfortunately,
this test suite development has not been successful in some cases. There are some
reasons for this: First, test suites have often been developed too late. The products
are already on the market before the corresponding test suites are published. A
second reason is cost. Because of the risk that the value is limited, the motivation
of the companies to participate in the development of a test suite voluntarily is
sometimes low. A third reason is quality. Informal descriptions tend to contain
ambiguities which may lead to misinterpretations. Even though the approval of
a conformance test suite by ETSI requires several reviews at different stages of
the test suite development process, the consistency between protocol specification
and corresponding test suite cannot always be guaranteed. The development of
complete formal SDL descriptions as the normative part of protocol or service
specifications is a possibility to tackle these problems.

In most cases, the development of a conformance test suite starts with the identifi-
cation of the test purposes of the individual test cases. A common representation
for test purposes is the Message Sequence Chart (MSC) language [20]. Most
commercial SDL tools, like SDT [28] or ObjectGEODE [30] provide possibili-
ties to check whether an MSC diagram1 describes a behavior included in an SDL
description.

The development of the test suite should start in parallel with the SDL modeling.
The MSC test purpose descriptions are requirements for the SDL specification
and their validation against the SDL description ensures that these requirements

1The termMSCis used for a diagram written in the MSC language and the language itself. Where
necessary, we distinguish between both by using the termsMSC languageandMSC diagram.



are met. In case of changes in the SDL specification, the re-validation of the MSCs
can be seen as regression testing, which helps to ensure and improve the quality of
the protocol standard. After the finalization of the SDL specification and the MSC
test purposes, computer aided test generation (CATG) methods can be applied for
the automatic generation of the conformance test suite.

The strength of such a methodology has been tested at ETSI by applying CATG
methods to the SDL specification of Core INAP. During test suite development,
the validation of the MSC test purposes helped to detect and correct several errors
in the protocol specification. Although Core INAP was the first application of
CATG methods within ETSI, it was shown that the cost for the test suite develop-
ment can be reduced significantly.

The remaining parts of this article are organized as follows: Some basics about
Intelligent Networks (IN) and the description techniques used for specification
are explained in Section 2. The development of the Core INAP SDL specification
at ETSI and the SDL specification itself are described in Section 3. The test
generation procedure is presented in Section 4. Finally, in Section 5, a summary
and an outlook are given.

2 Application area and description techniques

In order to understand the complex working procedures for the development of
the Core INAP CS-2 SDL specification and the corresponding conformance test
suites, some knowledge of IN, INAP and the languages and notations SDL, MSC,
ASN.1 and TTCN is required. It can not be assumed that a reader has expertise
in all these areas. Therefore, this section provides an introduction to themost
important concepts of IN, SDL, MSC, ASN.1 and TTCN.

2.1 Intelligent Networks and INAP

Intelligent Networks (IN) is currently one of the most important topics in the
telecommunications area. IN provides a complete framework for the creation,
provision and management of advanced telecommunication services.2 ITU-T (In-

2Detailed introductions to IN can be found in, e.g., [23] and [29].

ternational Telecommunication Union — Telecommunications Standards Sector)
and ETSI standardize IN in several series of standards. These series are known as
capability sets(CS) and they are distinguished by numbers. Currently, the capa-
bility sets 1 (CS-1) and 2 (CS-2) and 3 (CS-3) are published.

Examples of CS-1 services areabbreviated dialing(allows the use of short num-
bers for outgoing calls),time-dependent routing(allows incoming calls to be
routed based on time, day, week, etc.),reverse charging(allows call charges to
be allocated to the called party), orcall transfer(allows a call to be transferred to
another destination line).

Instead of adding new services, CS-2 identifies several service categories. The
categories refer toInternet working services, call party handling services(allows
to manage various parties’ participation within a call),mobility services, broad-
band services, bearer services, and other service features outside the range of
”single ended” calls and/or calls with ”single point of control” that werenot fully
addressed within CS-1.

A main principle of IN is to separate the control of a call and the basic call pro-
cessing. Conceptually, the control of a call is given to aService Control Function
(SCF), whereas the basic call processing is done inService Switching Functions
(SSFs). On the implementation side, an SCF is implemented in aService Con-
trol Point (SCP) and an SSF is implemented in aService Switching Point(SSP).
The SCP is typically a fault-tolerant transaction-processing database that provides
call-handling information in response to SSP queries. An SSP is implemented
within a normal switch. The following description only refers to the conceptual
view, i.e., to SSF and SCF.

Based on call characteristics like call origin or called party number, the SSF de-
tects if a call is an IN call, i.e., the call should be controlled by the SCF. For IN
calls, the SSF sends queries to the SCF and asks for information about the han-
dling of the call. Depending on the IN service to be realized for the call, queries
have to be sent in different states of the call, and specific call informationhas to
be provided within the queries.

Within the SSF, a call is handled by means of twoBasic Call State Models(BC-
SMs) which are calledOriginating Basic Call State Model(O-BCSM) andTermi-
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Figure 1: O-BSCM and T-BCSM in SSFs

nating Basic Call State Model(T-BCSM). The O-BCSM describes the incoming
side of a call and the T-BCSM models the outgoing side. As shown in Figure 1,
the calling party is connected to an O-BCSM and the called party is connected to
a T-BCSM.

The BSCMs are finite state machines and are used to control the basic call pro-
cessing within the SSF. In order to know when to send queries to an SCF, the
BCSMs include detection points (DPs). Some DPs have to be armed statically
(trigger detection points) and some can be armed dynamically (event detection
points). If an armed DP is reached during the call, the SSF knows that a special
treatment of the call is required. In most cases, the SSF has to ask the SCF for
further instructions. As a result of such a query, the SCP may provide new infor-
mation, e.g., a new called party number if a call is transfered to a new destination,
or force the SSF to arm a DP.

The communication between an SSP and an SCP is performed by using theIntel-
ligent Network Application Protocol(INAP). INAP is defined for different capa-
bility sets and for different regions of the world. For example, thetermCore INAP
CS-2refers to the European version of INAP capability set 2 (CS-2).

INAP is normally used within CCS73 networks and it is implemented within the
Transaction Capabilities Part(TCAP) [15] of the CCS7 protocol stack. As shown
in Figure 2, INAP is realized on CCS7 level 4 or, with regard to the OSIbasic
reference model [3], on the application layer (layer 7).

3CCS7 is an abbreviation for ITU-T’sCommon Channel Signalling System No. 7(see, e.g., Chapter
10 in [21]).
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Figure 2: INAP as part of the CCS7 protocol architecture

INAP is defined for the communication between various IN components and not
only for the communication between SCF and SSF. However, the Core INAPCS-
2 SDL modeling work at ETSI concentrates on the communication between SSF
and SCF.

2.2 Description techniques

For the development of Core INAP CS-2 SDL specifications and the correspond-
ing test suites, the description techniquesSpecification and Description Language
(SDL) [11, 18],Message Sequence Chart(MSC) [25, 20],Abstract Syntax Nota-
tion One(ASN.1) [27, 16, 17] andTree and Tabular Combined Notation(TTCN)
[1, 14] have been used. SDL and MSC are formal description techniques (FDTs),
i.e., they have standardized formal syntax and semantics definitions. ASN.1 and
TTCN are only notations. They have a standardized formal syntax definition, but
the semantics is given informally. ASN.1 and TTCN are well accepted in the
telecommunications community for the definition of protocol data and confor-
mance test suites.
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SDL, MSC and TTCN have two syntactical forms: a pure textual and a graphical
representation. The graphical forms are mainly used for editing purposesand
documentation. The textual forms are mainly used for the transfer of diagrams and
for code generation. Throughout this article, only the graphical representations of
SDL, MSC and TTCN are used.

2.2.1 SDL

The formal description technique SDL is standardized by ITU-T as Recommen-
dation Z.100 [18]. SDL is used to specify the behavior of a system. Such a system
is a collection ofSDL processeswhich communicate asynchronously by exchang-
ing messages. The reception of a message may force a process to change its state.
During such a state transition, the SDL process may send new messages and/or
perform operations on local variables. Figure 3 presents a state transition of an
SDL process specification. If the processCallSegment is in theForward state
and receives the messageSetupReq Ind, it calls the procedureSetLegStatus to
perform some operation on a local data structure, sends the messageSetupReq
and goes into stateTransfer.

SDL processes are combined to (sub-)systems by means ofblock diagrams. In a
block diagram, the process specifications are referenced and the communication
links among the processes and between the processes and the block environment
are defined. In Figure 7 the block typeSSF CCF is defined. The six inscribed

octagons refer to process definitions and the solid arrows define communication
links. The dashed arrows denote dynamic process creation, e.g., in Figure 7 pro-
cessCS(0,):CallSegment may create processSSF(0,):SSF FSM. SDL blocks
may be combined to bigger blocks or to a complete system. Figure 8 defines the
systemCS1 INAP. The rectangles refer to block definitions and the solid lines
with the attached arrow heads define communication channels.

SDL allows to specify systems in an object-oriented manner. For this, SDLhas
a type concept for processes, blocks and systems. These types can be reused
by means of inheritance and redefinition. SDL types can be collected in SDL
packages. The SDL Core INAP CS-2 specification makes extensive use of these
object-oriented concepts.

The SDL definition includes many additional language constructs which cannot
be introduced here. A complete language description can be found in [2] or [11].

2.2.2 MSC

The MSC language is defined in the ITU-T recommendation Z.120 [20]. Figure 4
shows an example of an MSC. The diagram describes the message flow between
the instancesSCF, CS2 SSF, SigCon A andSigCon B. The instances are rep-
resented by vertical axes. The messages are described by horizontal arrows. An
arrow origin and the corresponding arrow head denote the sending and consump-
tion of a message. In addition to the message name, parameters may be assigned
to messages (see values in square brackets below the message arrows). The send
and receive actions along an instance axis are totally ordered. The order of events
on different instance axes is mediated by the messages, i.e., a message must be
sent before it can be received and consumed.

The rounded rectangles in Figure 4 which cover all instances areMSC references.
They refer to the MSCsO OS andReleaseCallAB. MSCO OS can be seen as
the prehistory of MSCIN2 A BASIC RN CA 01 and MSCReleaseCallAB as
its continuation.

Further constructs of the MSC language describeinstance actions, timer handling,
instance creation, instance termination, the order of events along an instance axis
(coregion), and the refinement of instance axes by means ofsub-mscs. Individual
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Figure 4: MSC test purposeIN2 A BASIC RN CA 01

MSC sections within one MSC can be combined by means ofinline expressions.
Complete MSCs can be combined by means ofHigh-level MSCs. A complete
introduction to the MSC language can be found in [25].

2.2.3 ASN.1

TheAbstract Syntax Notation One(ASN.1) [27, 16, 17] is a notation for the de-
scription of structured information intended to be conveyed across some interface
or communications medium. ASN.1 allows to specify structured data typesand
values of the specified types. By means of encoding rules, it is possible todefine
how data types and values have to be implemented. The close relation to theactual
implementation may be one of the reasons why ASN.1 is very popular in industry,
but not very well known by scientists.

The use of ASN.1 is supported by TTCN and SDL. For SDL, a special ITU-
T recommendation Z.105 [19] exists which defines the use of ASN.1 typesand
ASN.1 values within SDL. INAP data types and operation calls are specified in
ASN.1.

2.2.4 TTCN

The Tree and Tabular Combined Notation(TTCN) is defined in Part 3 [14] of
the well established’OSI Conformance Testing Methodology and Framework’
(CTMF), which has been developed and standardized by ISO and ITU-T [13].
TTCN is a notation for the specification ofabstract test suitesfor OSI confor-
mance testing. Abstract means that a test suite should be independent fromany
concrete implementation. A TTCN test suite consists of� a test suite overviewwhich mainly is a table of contents of the test suite,� a declarations partwhich includes the message and data type definitions,� a constraints partwhich consists of conditions on message parameters, i.e.,

default values or value ranges which should be tested, and� adynamic partwhich for each test case describes the sequence of exchanged
messages.



As indicated by the name’Tree and Tabular Combined Notation’(TTCN), a
TTCN test suite is a collection of different tables. Figures 5 and 6 presenttwo
examples of TTCN tables. They will be explained below.

TTCN has its own data type and value assignment concept. It includes very pow-
erful matching mechanismsto express conditions on parameter values. These
matching mechanisms are comparable with the wild cards used in UNIX shells.
For practical purposes, TTCN allows to use ASN.1 in the declarations and con-
straints part.

The dynamic part of a TTCN test suite includes the test cases. A TTCN test case
describes the sequences of events which should be performed by the testers.In
general, these are send and receive events atPoints of Control and Observation
(PCOs). A PCO can be seen as an interface to theSystem Under Test(SUT).
The event sequence is specified by means of a tree notation. Figure 5 shows an
example. The tree notation can be found in theBehaviour Descriptioncolumn.

The tree structure is determined by the ordering and the indentation ofthe speci-
fied events. In general, events with identical indentation denote a branching (i.e.,
alternative events, for example, lines 8 and 15) and an increased indentation de-
notes a succeeding event (e.g., lines 2 and 3). Events are characterized by the
involved PCOs (i.e.,SCF, SigCon A andSigCon B), by their kind (”!” denotes
a send event and ”?” describes a receive event) and by the message which should
be sent or received.

The table in Figure 5 includes further information. The entries in the Constraints
Ref.column refer to TTCN or ASN.1 constraints. An example of an ASN.1 con-
straint is shown in Figure 6. An entry in theVerdictcolumn assigns atest verdict
to a test run. The verdicts indicate the success of the test run. Apassverdict
denotes that the test purpose is reached, afail states that an unexpected event has
happened and aninconclusivedescribes a situation where neither apassnor afail
can be assigned. The example in Figure 5 only includespassverdicts (lines 10,
13, 17). Thefail cases are specified in thedefault behavior descriptionOther-
wiseFail, which is referenced in the test case header.

TTCN allows to structure test case descriptions by usingtest steps. A test step
is a behavior tree which can be added to other behavior trees by means oftree

Test Case Dynamic Behaviour

Test Case Name: IN2_A_BASIC_RN_CA_01

Group :

Purpose :

Configuration :

Default : OtherwiseFail

Comments :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +O_OS

2 SCF ! TC_InvokeReq CIR_RequestNotificationCha

rging_002( 1 , 51  )

3 SCF ! TC_InvokeReq CIR_Continue_004( 2 , 51  )

4 SCF ! TC_ContinueReq C_TC_ContinueReq_001(

51  )

5 SigCon_B ? SetupReq C_SetupReq( { callRef 2,

calledPartyNumber ’2000’H,

callingPartyNumber ’1000’H }

 )

6 SigCon_B ! SetupConf C_SetupConf( { callRef 2 }  )

7 SigCon_B ! ChargingEventInd C_ChargingEventInd_002

8 SCF ? TC_ContinueInd C_TC_ContinueInd_003( 51

 )

9 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001( 102 , 51  )

10 SigCon_A ? SetupResp C_SetupResp( { callRef 1 }  ) (PASS)

11 +ReleaseCallAB

12 SigCon_A ? SetupResp C_SetupResp( { callRef 1 }  )

13 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001( 102 , 51  )

(PASS)

14 +ReleaseCallAB

15 SigCon_A ? SetupResp C_SetupResp( { callRef 1 }  )

16 SCF ? TC_ContinueInd C_TC_ContinueInd_003( 51

 )

17 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001( 102 , 51  )

(PASS)

18 +ReleaseCallAB

Detailed Comments:

Figure 5: Dynamic behavior description of test caseIN2 A BASIC RN CA 01



ASN.1 ASP Constraint Declaration

Constraint Name : CIR_RequestNotificationCharging_002( Invoke_ID : InvokeIDtype; Dialog_ID : DialogIDtype )

ASP Type : TC_InvokeReq

Derivation Path :

Comments :

Constraint Value

{ invokeIDtype1 Invoke_ID, dialogIDtype2 Dialog_ID, opClassType3 2, opCodeType4 RNC, timeoutValType5 short,
argType6 rNCArg : { { eventTypeCharging PIX_EventTypeCharging1, monitorMode interrupted } } }

Detailed Comments :

Figure 6: TTCN constraintCIR RequestNotificationCharging

attachment. The TTCN test case in Figure 5 includes four tree attachments. In
Line 1, the test stepO OS is called and in lines 11, 14 and 18, the test step
ReleaseCallAB is attached to the test case behavior.

TTCN supports concurrency by allowing to execute several behavior treesin par-
allel. For this, amain test component(MTC) is allowed to create severalparallel
test components(PTCs). The test components can coordinate themselves during
test execution by exchangingcoordination messages. For the exchange of coordi-
nation messages, the same notation as for normal messages is used.

2.3 Tool support

The combined use of SDL, MSC, ASN.1 and TTCN stands and falls with the
availability of powerful tools. Within ETSI, the Tau package is used [28]. How-
ever, other tool sets provide comparable functionality. As an alternative tool chain,
we would like to mention ObjectGEODE for the SDL/MSC side [30] andEX-
PERT*TTCN [8] for the TTCN side.

Tau contains two tool sets: SDT on the one hand consists of SDL- and MSC-
related applications (including support of the combined use of SDL and ASN.1
according to [19]); ITEX on the other hand is used to work with TTCN test suites
(including support for the use of ASN.1 within TTCN). Tau provides graphical
editors, syntax and semantic checkers, code generators (for several target pro-
gramming languages), and simulation and validation tools for all of thementioned
description techniques.

2.3.1 Graphical editors and SDL simulator

Graphical editors provide functions to edit and analyze SDL, MSC and TTCN
specifications. An SDL specification can be translated into a simulator and a
validator application. The SDT simulator provides the possibilities to follow a
simulation run by means of an MSC, or by ”highlighting” the SDL symbol which
has been executed last in the SDL editor. For further analysis or reuse in another
context, a simulation run can be stored in form of an MSC.

2.3.2 The validator

The validator is used to detect dynamic and logical errors in an SDL system.
Some of the potential problems are deadlocks, implicit signal consumptions4 and
the sending of signals to non-existing processes.

The Validator is based on state space exploration techniques [12]. The state space
of an SDL system is built up in the form of a directed graph, calledreachability
graph. The reachability graph describes the behavior of the SDL system. Its nodes
correspond to global system states and its edges represent the transitionsbetween
global system states. During validation, the reachability graph is analyzed. For
example, a deadlock is found if a node in the graph does not have any outgoing
edges.

Verification of an SDL specification against its requirements is one main purpose
of the Validator [9]. Most requirements can be expressed in form of MSC di-
agrams. The Validator explores the state space and searches for a path in the
reachability graph complying to the MSC which is checked. The MSC isverified
if such a path exists.

2.3.3 Autolink

Autolink [10, 22, 26] is part of the SDT validator. The objective ofAutolink is
to provide an easy-to-use yet powerful tool to generate TTCN test suitesfrom an
SDL specification. Potential users are engineers who have a good understanding

4SDL processes are allowed to discard signals which are received but not explicitly expected in the
actual state.



of the system they have specified, but who do not have detailed knowledge of
TTCN. Specialized test suite designers also benefit from using Autolink.They
can concentrate on the correct description of test purposes while leaving the error-
prone task of writing TTCN code to the tool.

Test generation with state space exploration

Autolink uses the state space exploration techniques and the MSC verification
mechanism provided by the SDT validator. The generation of a TTCN test caseis
based on apath. In the Autolink context, a path is defined as a sequence of events
which have to be performed in order to go from a start to an end state in the state
space of the SDL specification. The externally visible events of a path describe
the test sequence to which a TTCNpassverdict is assigned.

Autolink uses a modified version of the MSC verification algorithm to compute
all relevant transitions in the state space. Each transition is analyzed: Events
which are visible at the environment are added to an internal data structurewhich
represents a test case. If an event satisfies the MSC, it is added as apassevent; if
it violates the MSC, it is added as aninconclusiveevent. Additionally, a constraint
is created for every visible event.

After the generation of all test cases, the test suite can be translated into the TTCN
format. The declarations part is deduced from the SDL specification; the con-
straints and dynamic part are a translation of the Autolink internal data structure.
The production of the TTCN overview part can be done afterwards by using a
TTCN tool like ITEX.

Direct translation of MSCs into TTCN

In order to use a state space exploration to generate test cases from MSCs, acom-
plete SDL specification is required. However in the real (standardization) world,
only partial specifications exist for most systems; often there is no SDL specifi-
cation at all. Standardized protocols like Core INAP CS-2 (Section 3) cannot be
specified completely, e.g., error handling or charging functions remain unspecified
or are specified partially. Nonetheless, to guarantee a uniform test suite develop-
ment process,all test purposes can be formalized as MSCs.

Autolink supports the processing of manually developed MSC test purposes by
providing a function which translates MSCs directly into TTCN (MSC!TTCN
translation). Although it does not perform a state space exploration, Autolink
performs some static semantics checks.

For this, information information about the interface between the system and its
environment is needed. Hence, a minimal SDL specification has to be provided
which defines at least the channels to the environment, i.e., the PCOs, and the
signals which are sent via these channels.

Constraint handling

Basically, a constraint with a generic name is created automatically for every send
and receive event in all test cases. Considering the readability of a test suite,
this is far from being optimal. Therefore, Autolink includes a special constraint
description language. By defining rules in a configuration file, the test designer
can control the naming and parameterization of constraints.

If several test cases are processed consecutively, a lot of constraints are created.
Autolink detects and merges identical constraints. As a result, the numberof
constraints is reduced significantly.

3 The Core INAP CS-2 SDL model

In this section, the working method for the development of the CoreINAP CS-2
SDL description and the SDL specification itself are explained.

3.1 Working method

IN is standardized by ITU-T within Study Group 11 (SG 11). The relevant stan-
dards are the Recommendations Q.1211-Q.1215, Q.1218-Q.1219 for CS-1 and
Q.1221-Q.1225, Q.1228-Q.1229 for CS-2. The ITU-T INAP specifications can
be found in the Q.12X8 Recommendations. For the European telecommunica-
tions market, the ETSI Technical (Sub-)Committee SPS3 selects an IN subset and
adds specific European requirements.



The ETSI work on the Core INAP CS-2 SDL model started in the middleof 1995.
It was done in close cooperation with ITU-T SG 11.5 The goal of the work was to
develop a high quality standard which can serve as a basis for validation andtest
generation, in less than two years.

To reach these goals, it was decided to use ASN.1 as data description language
and SDL as specification language for the protocol behavior. Core INAP CS-2
should be developed in an object-oriented manner. As a result, Core INAPCS-1
was developed first and Core INAP CS-2 was modeled on the basis of Core INAP
CS-1 by using the SDL mechanisms of inheritance, virtuality and redefinition.

The modeling work was mainly done by a group of voluntary experts from
British Telecom, France Telecom, Ericsson, Siemens, Alcatel, Hewlett Packard
and Nokia. The group met approximately one week per month at ETSI. The work
was supported by an SDL specialist of the ETSI PEX group and resources from
ETSI TC MTS.

The modeling work was based on U.S. requirements. As a consequence, a close
working relationship with BellCore was set up. The work was structured in such a
way that the INAP experts concentrated on the protocol requirements and provided
their intentions to the SDL specialists in form of informal SDL. Theinformal SDL
was formalized and the result was discussed and reviewed by the whole group.

Further input on problems and errors was given from the experts groupwhich de-
veloped the Core INAP CS-2 conformance test suites. The test suite development
by means of CATG techniques started in February 1997, i.e., in parallel to the last
phase of the Core INAP CS-2 definition. On the one hand, the work ofthe test
development group lead to changes and corrections of the SDL specification. On
the other hand, changes of the SDL specification required some reassessment of
the test development group. There is no doubt that the mutual influenceof the
two groups of specialists6 helped to improve both the SDL specification and the
corresponding TTCN conformance test suites.

The result of the entire modeling work is the SDL Core INAP CS-2 description

5Please note, the INAP CS-2 models of ITU-T and ETSI SDL are different, although their devel-
opment started at the same time with experts contributing toboth organizations.

6It should be noted that only one expert was member of both groups.

which consists of more than 450 pages of SDL diagrams. ETSI published Core
INAP CS-2 as European Norm (EN) in May 1999. The corresponding ITU-T
INAP CS-2 SDL specification was published in Spring 1999. In both standards,
the SDL description is a normative annex with the same status as the textual de-
scription. As already mentioned by Dave Rayner in [24], the developmentof the
INAP CS-2 SDL description was a breakthrough for the use of SDL in standard-
ization.

3.2 The SDL specification

Core INAP CS-2 is not a symmetrical protocol. It is used for the communication
of different IN components, e.g., SSF, SCF or SRF, with different functions. One
would expect different INAP standards for different IN components, butETSI
and ITU-T decided to develop one INAP specification for the SSF only. The
reason is simple: In an IN-based network7, the SSF has to be implemented on all
switches, whereas only a few SRF or SCF entities are needed. Therefore, for most
telecom operators and manufacturers, the SSF has higher priority than the other
components.

As described in Section 2.1 and shown in Figure 1, an SSF handles a call by means
of two BCSMs, i.e., the logic of a call is structured into twohalf-calls. Figure 7
presents the half-call structure of the Core INAP CS-1 specification. The process
references for originating BCSM (O BCSM) and terminating BCSM (T BCSM)
can be found at the bottom of the block diagram. They are dynamically created
and depending on the role of the half-call, either anO BCSM or a T BCSM
is created. Figure 7 also includes references to the processesIH of type Inter-
face Handler, CSA of type CallSegmentAssociation, CS of type CallSeg-
ment andSSF of typeSSF FSM.

The IH is a permanent manager of the call control function of the CS-1 half-call
view. When the simulation of the SDL specification starts, theIH is the only
process of a half-call that exists. During a call setup and after having received
the appropriate messages from the half-call environment, theIH creates aCSA.
The IH is modeled in such a way that it is able to handle half-calls from several

7IN-based means that an IN architecture is used. Some telecommunication services described in
IN standards can still be implemented in a conventional environment, i.e., without IN architecture.
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/* Note: The functional architecture of the
         SSF/CCF is in line with Q.1228 (IN
         CS-2) and not Q.1218 (IN CS-1). */
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Figure 7: Core INAP CS-1 SSF half-call view

calls. Besides the creation ofCSA processes, theIH handles the dialogue with
the SCF (viaSCF Interface), manages the dialogue with the other half-call view
(via IBI Interface) and passes messages between the signalling control interface
(SigCon Interface) and theCSAs.

A CSA manages the creation of call segments, i.e.,CS processes, and the dialogue
with theIH. A CS creates anSSF and anO BCSM or aT BCSM. Furthermore,
the CS is responsible for the filtering of detection points (see Section 2.1). An
SSF process manages the processing of IN operations., i.e, it sets detection points
and extracts/stores call information. Furthermore, it is responsiblefor the handling
of detection points, i.e, it controls the arming and disarming of detection points.

For modeling the complete SSF behavior of a switch, two half-call views have
to be combined. This is done in Figure 8. The blocksSSF CCF A and
SSF CCF B are instances of theSSF CCF block type shown in Figure 7. Ad-
ditionally, Figure 8 includes a third block instance calledTCAP Adapter of type
TCAP Simulator. The reason for this block has been explained in Section 2.1.
Within a CCS7 protocol architecture, INAP is normally implemented on top of
TCAP. This means that on a standardized interface at the SCF side, INAP primi-
tives are encoded in TCAP messages. In the model this encoding is done by the
functionality of theTCAP Adapter block.

The Core INAP CS-1 system in Figure 8 has five interfaces to the environment:
SCF, SigCon A, SigCon B, Management A and Management B. The ex-
change of INAP primitives within TCAP messages is performed at interfaceSCF.
The interfacesSigCon A andSigCon B are abstract signalling control interfaces.
They are used to handle the calls itself. In a real-world implementation,such an in-
terface is connected either to another switch (via SS7) or to a terminal (via DSS1).
The interfacesManagement A andManagement B have no counterpart in real-
ity. They are used to set the system into states which cannot be reached by normal
message exchange at the other interfaces. They can be compared with some sort
of operator terminal at a switch.

Up to here, only the Core INAP CS-1 part of CS-2 has been described. CS-1
services can be characterized by the property that they are applicable to ”single-
ended” calls and/or calls with ”single point of control” only. This meansthat in
one SSF, only two half-calls can be involved in a call. Services where more than
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/* The SSF consists of two half call views,
   SSF/CCF-A and SSF/CCF-B.

Notes:

  - The functional architecture is in line with
    Q.1228 and not with Q.1218.
  - Only the behaviour at the SCF channel is normative.
    All other information is informative.

/* Note: The TCAP Adapter models the
behaviour of the TCAP service at the
SCF side, i.e. the endpoint of the SCF
channel is the interface SCF <-> TCAP. */

/* Note: The ManagementInterfaces are informative
interfaces, they model the possibility of static trigger
table manipulation. */
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Figure 8: Core INAP CS-1 system diagram

two parties are involved, cannot be realized in CS-1. Therefore, the main exten-
sion in the SDL specification of Core INAP CS-2 to CS-1 iscall party handling
(CPH), i.e., the possibility to handle services with more than two parties involved.

For CPH, multiparty calls have to be made visible to the SCF. This is done by
introducing the abstractconnection view. From the perspective of call-related sig-
nalling, the connection view is a half-call view. That is, each leg8 of a multiparty
call is associated with a BCSM. In a multiparty call, a leg can have the status
joined, pending, sharedor surrogatedand it may have acontrolling or passive
role in the call.9

In CS-2,connection view statesfor multiparty calls are defined by the legs in-
volved, their status and their roles. CS-2 provides operations to changethe state
of a multiparty call by using the connection view abstraction, i.e., theoperations
refer to connection view state changes.

Figure 9 shows the SSF half-call view of the Core INAP CS-2 SDL specification.
Compared to Figure 7, the structure does not change much. The CS-1 half-call
view is reused and the processes are redefined. In most cases, the redefinitions
add behavior to the processes in order to handle the additional CS-2 operations.
The connection view handling as described above is performed by theCS process.
TheCS handles the legs and is responsible for the processing of connection view
oriented IN operations.

4 Test generation for Core INAP CS-2

For the understanding of the test generation procedure, it is necessary to have
some basic knowledge about the relation between the SDL specification and the
test architectures for which the test suites are developed. This is explained in the
first part of this section. Then, the test suite development procedure is explained,
and finally, the test suites are described.

8Legs and half-calls are not exactly identical, but for the understanding of this paper we can assume
that they are similar.

9A multiparty call can only have one controlling, but severalpassive legs.
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/* Notes:
    - Dashed symbols refer to
      entities defined in the
      IN CS-1 SDL specifica-
      tions.
    - The functionality and
      interfaces of all entities
      are extended to incorpo-
      rate the IN CS-2
      functionality. */
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4.1 Multi-party testing context and Core INAP CS-2

The conformance test suites for Core INAP CS-2 are written for amulti-party con-
text. The multi-party context is one of theabstract test methodsdefined in CTMF
[13]. An abstract test method is an implementation-independent description of a
test configuration. Test cases for the multi-party context are specified by using
concurrent TTCN (see last paragraph of Section 2.2.4).

Figure 10 shows a Core INAP SSF test configuration for a two party call. There
are three test components (MTC SCF, PTC A andPTC B), which control and
observe theSystem Under Test(SUT) via standardized interfaces. The TCs de-
scribe protocol peer entities of entities which reside within the SSF. The standard-
ized interfaces (SCF, A PCO andB PCO in Figure 10) are used as PCOs. They
are realized by using standardized communication services. In our case, these
services are provided byTCAP, ISUPand/orDSS1.

The Core INAP behavior of the SSF is controlled and observed via TCAPby
MTC SCF at PCOSCF. As indicated by the name,MTC SCF is the main test
component in this test configuration and plays the role of the SCF.PTC A and
PTC B are parallel test components. They manage the call signalling. Depending
on the configuration of the SSF, each of them either plays the role of a terminal or
the role of another switch. In case of a switch, ISUP is used for the communication
with the SSF; in case of a terminal, DSS1 is used.



As a consequence, four different variants of the same Core INAP test suiteare
needed. The different variants are the result of the two different roles both,PTC A
andPTC B, may play.10

However, ETSI does not provide different variants of the same Core INAP test
suites. Instead, Core INAP abstracts from the concrete ISUP and DSS1 message
flow by introducingabstract signalling control messageswhich are exchanged
at abstract signalling control interfaces. In Figure 8, these abstract signalling
control interfaces are represented by the channelsSigCon A andSigCon B. In a
concrete test implementation, the abstract signalling control messages have to be
mapped to ISUP or DSS1 messages by the PTCs.11

The functionality of the PTCs is reduced to simple mapping functions, since the
MTC and PTCs coordinate themselves by exchanging the abstract signallingcon-
trol messages: A PTC reports the reception of ISUP or DSS1 messages by send-
ing the corresponding abstract signalling control messages to the MTC;the MTC
forces a PTC to send ISUP or DSS1 messages by sending the corresponding ab-
stract signalling control messages to the PTC. This means that the SDL system in
Figure 8 specifies the mirror behavior of the MTC shown in Figure 10.

The test architecture in Figure 10 describes the situation for two partycalls only.
For CPH in Core INAP CS-2, multiparty calls have to be handled as well.In
the abstract test architecture, further PTCs, CPs and PCOs have been introduced.
Similar to the situation above, the test suite for CPH only includes the MTCs of
the test cases.

4.2 Test suite development working procedure

The purpose of the SDL model was not only to provide a firm basis forthe INAP
standard (Annex A of [5]), but also to facilitate work in other areas. ETSI has
particular interest in test case generation. The expectation was that throughthe
use of advanced tools, the development of a test suite could be simplified. The

10Please note, the objective is to test Core INAP and not ISUP orDSS1. The different roles of the
PTCs have no influence on the TCAP/Core INAP interface.

11To the knowledge of the authors, some telecom operators havedefined a mapping of ISUP and
DSS1 messages to abstract signalling control messages, butthis mapping has been done for internal
use only and has not been published officially.

tool which has been used for the Core INAP test suite development was Autolink
(Section 2.3.3).

A group with experts from Siemens, Alcatel, Telefonica and the University of
Lübeck was set up. Additionally, a permanent expert of the ETSI PEX group
joined the experts group. The permanent expert was also a member of the SDL
modeling group and, therefore, was responsible for the communication between
the modeling group and the test experts.

The test suite development for Core INAP CS-2 by means of computer aidedtest
generation methods required knowledge of IN, IN testing, Core INAP, SDL, MSC,
TTCN, ASN.1 and CATG tools. None of the experts had deep knowledge inall of
these areas. Therefore, during the work sessions, a lot of communicationbetween
the experts was required.

The experts team developed three test suites: one for the CS-1 functionality
within CS-2, one for CPH and one for SRF. The test suite development procedure
was almost identical for all test suites. It was structured into three phases:
Identification and development of test purposes, test generation and manual
post-processing of the test suite.

4.2.1 Identification and development of test purposes

The development of conformance test suites at ETSI is oriented on test purposes.
A test purpose describes a part of the behavior of a protocol for which atest
case has to be developed. In a first step, test purposes are specified informally.
Afterwards the informal test purposes are formalized by means of MSCs.

Based on the Core INAP CS-2 protocol requirements, the test purposes were iden-
tified manually and documented in tables which structure the informal text. As
shown in Figure 11, the table entries may refer to pre- and postambles, describe
the pass criteria and may provide further information.

Then, MSCs were created for all test purposes. Whenever possible, this was done
by simulation of the SDL specification of Core INAP CS-2. An advantage of
creating test purpose MSCs by simulation is that the consistency betweenthe in-



IN2 A BASIC RN CA 01
Purpose: Test of RequestNotificationChargingEvent base procedure
Requirement ref
Preamble: O OS
Selection Cond.
Test description SCF sends RequestNotificationChargingEvent invoke to SSF

containing mandatory parameters only, with:
- ChargingEvent

eventTypeCharging,
monitorMode (interrupted)

Pass criteria After triggering of charging event from SigCon A, check that SSF
sends to SCF an EventNotificationCharging with the indication of
eventTypeCharging

Postamble: ReleaseCallAB

Figure 11: Informal test purpose descriptionIN2 A BASIC RN CA 01

formally developed test purposes and the protocol is guaranteed. A numberof
errors in the informal test purpose descriptions were detected with this method.

Since the SDL specification of the Core INAP CS-2 protocol does not include
error handling and due to standardization politics, some of the protocol functions
are only specified rudimentary. The MSC test purposes related to these protocol
aspects were specified manually in order to apply the direct MSC!TTCN trans-
lation feature of Autolink. However, these manually generated MSC test purposes
look like the ones created by simulation.

The MSC test purposes provided the input for the Autolink tool andwere also
included in the test purpose document [6]. The inclusion of the MSCswas a
requirement from organizations which do not use TTCN for testing, butwhich
need a formal description of each test purpose.

Figure 4 shows an MSC which formalizes the test purpose of Figure 11.The MSC
refers to the preambleO OS and the postambleReleaseCallAB, which are also
described by MSCs.

During the development of the MSC test purposes, the SDL specificationof Core
INAP CS-2 and the test purposes were validated also. As a result, the SDLspeci-
fication had to be corrected and modified several times. This changed the behavior

of the SDL specification and some of the already developed MSC test purposesbe-
came invalid. In order to detect invalid MSCs after each change of the SDL model,
all MSC test purposes which had been developed by simulation were revalidated
against the SDL model. This was done automatically overnight or at weekendsby
using a shell script. Due to the complexity of the SDL model, the validation of all
MSCs took some time. To reduce it, MSC test purposes were validated in parallel
on several computers.

4.2.2 Test generation

Figure 12 presents the test generation procedure from the perspective ofthe tool.
The Core INAP SDL specification was developed by the SDL modeling group.
The test purposes (or paths in the Autolink terminology) in form of MSCs had
been developed by the test experts group. Additionally, the test experts defined
an Autolink configuration file. This configuration file included validator options
for test cases which had been generated by a state space exploration and defined
the rules for the constraints handling, i.e., naming and parameterization. Based on
these inputs the test cases were calculated.

State space exploration was performed by Autolink to generate TTCN test cases
for the MSC test purposes created by simulation. The manually specified MSC
test purposes were translated directly into TTCN code. Apart from the fact that the
test cases related to the manual MSC test purposes do not include event sequences
leading to aninconclusiveverdict, all TTCN test cases look very similar.

4.2.3 Postprocessing of the testsuite

The TTCN output needed postprocessing, because the Autolink version avail-
able at that time did not support concurrent TTCN, test suite parameterization by
means ofProtocol Implementation Conformance Statement/Protocol Implemen-
tation eXtra Information for Testing(PICS/PIXIT) and timers. The PICS/PIXIT
parameterization and the change to concurrent TTCN, i.e., the specification of test
configurations, the declaration of CPs and the definition of coordination messages,
were performed automatically with a shell script operating on the TTCN file. The
timers were introduced manually. The result was analyzed for consistency by
using TTCN analyzers and semantics checkers.
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A test case after post-processing is shown in Figure 5. This test case is the result
of a direct MSC!TTCN translation of the MSC test purpose presented in Figure
4. The corresponding informal test purpose description is shown inFigure 11.

Figure 5 defines the MTC of the test caseIN2 A BASIC RN CA 01. The send
and receive events in theBehaviour Descriptioncolumn of Figure 5 refer to the
PCOSCF and the CPsSigCon A andSigCon B.

A TTCN expert might be a little bit confused by looking at the MTC description,
because the creation of the PTCs is missing. The creation of PTCs is not specified,
because the PTCs are not defined in the test suite. For the test case implementa-
tion, the consequences of using generic names or omitting the create statements
are the same. In both cases, the test case description has to be modified manually.

4.3 The Core INAP CS-2 test suites

Three conformance test suites have been developed for Core INAP CS-2 [7]. They
are discussed in this section.

4.3.1 CS-1 functionality within CS-2

The first conformance test suite developed by the ETSI experts group has the
objective to test the Core INAP CS-1 functionality within Core INAP CS-2. In
total, 126 test purposes were specified [6]. For 67 test purposes, the MSCs could
be simulated in order to produce the corresponding test cases by using state space
exploration. The remaining 59 MSC test purposes had to be specified manually
and translated directly into TTCN due to unspecified parts in the SDL model.

The test suite resulted from a repetitive process of SDL/MSC refinementsand
modifications, MSC verifications and test generation runs. For statisticalpur-
poses, some MSC verification and test generation runs were performed at the
University of Lübeck. The test results discussed below were obtained onSUN
ULTRA 2 workstations with two 300 MHz processors.

The time needed for the verification of an MSC ranged from 1 min 24 sec to
2 h 15 min. It took between 6 min 44 sec and 51 h 49 min (= 3109 min) to generate
a test case.



The larger amount of time needed for test generation is not surprising: During
MSC verification, a path in the state space graph is truncated as soon as an event
in an SDL transition conflicts with the MSC. During test generation, the path
needs to be extended until an observable event occurs.

Verification of all MSCs on a single machine would have taken about a day; gen-
eration of all test cases would have taken about a week. Therefore, the processing
of test purposes was distributed among up to fifteen workstations.

With regard to the whole development process, the time effort for the actual test
generation was not relevant. Most time was spent on refinements of the SDL
specification and the test purposes.

For the Core INAP CS-1 test suite, the relation between the number of test cases
and manpower spent was one test case per man-day. This includes the develop-
ment of the test purposes, the set-up of the whole working procedureat the be-
ginning of the test suite development, manual post-processing of the test suite and
the production of all documents. In total, ETSI estimates that about 20%of the
expenses for the development of the Core INAP CS-1 test suite have been saved
by tool support in comparison with manual test suite development.

4.3.2 Core INAP CS-2 CPH test suite

The objective of the second Core INAP test is to test CPH functionalityof the
SSF. In total, 120 MSC test purposes were defined. 107 MSC test purposescould
be simulated and 13 MSC test purposes were specified manually. All test pur-
poses were developed by three experts within two weeks, i.e., 30 man-days. Ad-
ditionally, 10 man-days were needed for the setup of the test generation, for the
post-processing of generated test suite and for the documentation.

However, the relation between the number of test cases and manpower spent was
three test cases per man-day. There are several reasons for this impressive result.
The working procedure was known and the experts could use their experience
from the CS-1 test suite development to optimize their work. Furthermore, the
SDL model was much more stable due to the corrections which had been made
during the CS-1 test suite development. Only a few errors in the SDL specification
were detected and corrected during the development of the CPH test suite.

4.3.3 Core INAP CS-2 SRF test suite

The third test suite checks the INAP connection with an SRF. The test suite con-
sists of 33 test cases. All MSC test purposes were defined manually and the test
cases are the result of direct MSC!TTCN translation. The whole test suite in-
cluding postprocessing and documentation was developed in 20 man-days.

5 Summary and outlook

Core INAP CS-2 is the first protocol in standardization history forwhich a for-
mal SDL specification has the same normative status as the textual description.
Furthermore, Core INAP CS-2 is the first protocol for which the corresponding
standard conformance test suites have been developed based on CATG methods
for SDL specifications and MSC test purposes.

Core INAP CS-2 is a good example to show that formal description techniques
like SDL and MSC are applicable to complex real-world systems, if their smooth
interworking with well established techniques like TTCN and ASN.1 is guaran-
teed. The developed SDL specification is also used outside standardization for the
evaluation of service logic, as a tutorial, for the development of in-house tests and
as a basis for product design.

The next step in the IN development is CS-3. It was decided that Core INAP
CS-3 (ETSI) and INAP CS-3 (ITU-T) should be identical. A Core INAPCS-3
SDL specification is under development at ETSI. The corresponding test suites
will also be generated automatically.
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