
Retrospective Analysis of Software Projects using k-Means Clustering

Steffen Herbold1, Jens Grabowski1, Helmut Neukirchen2, Stephan Waack1

1 Institute of Computer Science,
University of Göttingen, Germany

{herbold,grabowski,waack}@cs.uni-goettingen.de

2 Faculty of Industrial Engineering,
Mechanical Engineering and Computer Science

University of Iceland, Iceland

helmut@hi.is

Abstract

Software projects are usually analyzed by experts
based on their previous experience, their intuition and
data they gather about the project. In this work, we
show an approach for a purely data-driven retrospec-
tive project analysis. We plan to build on this work
to make predictions about the evolution of software
projects.

1 Introduction

Schedule slips are usually discussed as part of software
development projects to learn from failures of finished
projects to avoid the same failures in future projects.
A common reason for schedule slips is that features are
still added after a feature freeze instead of stabilizing
the project as planned. During a retrospective, the
diagnosis whether more than stabilization took place
after the feature freeze is usually based on intuition,
i.e. tangible data consciously and unconsciously taken
into account, e.g., whether the number of open bugs
decreased or increased.

To improve the confidence of the developers’ intu-
ition, we use data mining [4] and extract information
from the repository of a software project and use ma-
chine learning to identify a feature freeze. To this aim
we gather software metrics [2] about intermediate ver-
sions of the software during the development and use
the k-means algorithm to cluster the versions into two
sets. The one set is interpreted as the one before and
the other as the one after the feature freeze. The data
is chosen to mimic the intuition of a developer by us-
ing the number of open bug reports as indicator of the
quality of a software product and the size of the source
code as indicator for the project growth. The metric
data is mined from two sources: a version-controlled
source code repository and a bug tracking system.

For validation of the approach, we present results
from a case study where we apply our approach to

intermediate versions of projects from the Eclipse1

ecosystem.

2 Mining

For mining a project in retrospective, we have two re-
quirements on the infrastructure. Firstly, the source
code needs to be managed using a version-controlled
repository, e.g., CVS2. Then, we are able to obtain
intermediate versions of the software from the repos-
itory to measure the size of the project. As measure
for the size, we use the Lines of Code (LOC) of the
source code.

Secondly, the project needs to use a bug tracking
system, e.g., Bugzilla3. The tracking data, i.e. when
a bug report was filed and when it was afterwards re-
solved can be used to determine the Number of Open
Bug Reports (BUG) for intermediate versions of the
software.

Thus, the mining boils the data contained in the
source code repository and the bug tracking system
down to tuples (LOC, BUG) for each measured ver-
sion. The set of all these tuples is interpreted as a
subset of the two-dimensional real-space R2.

3 Analysis

The aim of the analysis is to separate the measured
data into two sets containing the versions before and
after the feature freeze, respectively. For this pur-
pose, the k-means algorithm, an intuitive and popu-
lar clustering algorithm, is used. In the following, we
only outline the algorithm, a detailed analysis can be
found in [3]. The k-means algorithm yields k clusters
that are identified by their centers as their representa-
tives. The algorithm randomly chooses k centers and
iterates the following two steps until convergence:

1http://www.eclipse.org/
2http://www.nongnu.org/cvs/
3http://www.bugzilla.org/



1. Each data point is assigned to the cluster repre-
sented by the closest center.

2. Each cluster center is replaced by the coordinate-
wise average of all points belonging to the corre-
sponding cluster.

These two steps minimize the intra-cluster variance.
With respect to our application this means that the
versions inside a cluster are somewhat similar. There-
fore, under the assumption that versions before the
feature freeze are more similar to each other than to
those after the feature freeze, the algorithm separates
the versions at the feature freeze.

Different metric scales can impact the weight given
to each metric by the k-means algorithm during the
first step. Large scales lead to greater distances, there-
fore metrics with large scales are favored. To elimi-
nate the effect that different metric scales have on the
resulting clusters, we normalize the metric data. Nor-
malization means that all metric scales are converted
to [0, 1] while keeping the relative distances between
the values. Another aspect is that normalized data
is better suited for inter-project comparisons, as the
size is no longer a factor because normalized metrics
are relative to the size, but do not include the size
anymore.

4 Case Study

To validate our approach, we applied it to two
projects. To allow a good comparison of the results,
we chose projects that had the same project plan
with respect to the produced milestones and release
candidates: the Eclipse Platform4 project 3.2 and
the Eclipse Java Developement Tools (JDT)5 project
3.2. Both projects were mined as described in sec-
tion 2. We only measured the Java source code of
both projects, test code was not included in our mea-
surements. Other sources, such as XML files, were
ignored as well. Both projects consist of more than
500 KLOC. In addition to the final version, six mile-
stones and six release candidates were produced in
each project. Furthermore, we used version 3.1 as a
baseline for the development. Thus, we obtained 14
metric tuples (LOC, BUG) for both projects.

According to the project plan, at Milestone 5, the
API was frozen and at Milestone 6, the development
was frozen. Therefore, our experiment is successful if
the clusters separate the intermediate versions around
Milestone 5 or Milestone 6.

When applying the k-means algorithm to the nor-
malized data, the software versions are correctly clus-
tered: for each project, the adjacent versions from the
version 3.1 to Milestone 4 are assigned to one cluster,
the remaining adjacent versions from Milestone 5 to
the final release version are assigned to the second
cluster. Thus, our approach correctly detected the

4http://www.eclipse.org/platform/
5http://www.eclipse.org/jdt/

Figure 1: Measured values and cluster assignments

feature freeze between Milestone 4 and Milestone 5 for
both projects. Figure 1 visualizes the development of
the measured values of both projects, the vertical line
indicates the cluster assignments: the area left of the
line belongs to one cluster, the area on the right to
the other.

5 Future Work

In the future, we plan to apply our approach in fur-
ther case studies with more projects to increase the
confidence into its generality. At the same time, we
will investigate additional software metrics that can
be used as basis for the analysis. These might include
change metrics like Lines of Code Changed Since the
Last Version or Number of Fixed Bugs. Furthermore,
more sophisticated clustering techniques like the EM-
algorithm [1] may be used and their performance will
be evaluated against the results produced by the k-
means algorithm.

Based on the increased amount of data, we also
aim to devise techniques that allow us to draw conclu-
sions not only in retrospective, but rather predictions
for the future. To this aim, supervised learning will
be utilized to train predictors about the future of a
project. Such predictors can infer information about
the probable future of projects, e.g., whether a project
is on schedule or not. These predictions can in turn be
used by the project management to support steering
decisions.

References

[1] A. P. Dempster, N. M. Laird, and D. B. Rubin. Max-
imum Likelihood from Incomplete Data via the EM
Algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977.

[2] N. E. Fenton and S. L. Pfleeger. Software Metrics:
A Rigorous and Practical Approach. PWS Publishing
Co., 1998.

[3] D. J. MacKay. Information theory, inference, and
learning algorithms. Cambridge Univ. Press, 2003.

[4] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan Kauf-
mann, 2005.


