
A Message Sequence Chart-Profile for Graphical
Test Specification, Development and Tracing –

Graphical Presentation Format for TTCN-3

Paul Baker1, Jens Grabowski2, Ekkart Rudolph3, Ina Schieferdecker4

1Motorola (UK) Research Laboratory, Motorola Labs, Basingstoke,
Hampshire, ENGLAND, Email: Paul.Baker@motorola.com

2Universität zu Lübeck, Institut für Telematik, Ratzeburger Allee 160,

D-23538 Lübeck, GERMANY, Email: jens@itm.mu-luebeck.de

3Technische Universität München, Institut für Informatik, D-80290 München,
GERMANY, Email: rudolphe@informatik.tu-muenchen.de

4GMD FOKUS, CC TIP, Kaiserin-Augusta-Allee 31, D-10589 Berlin,

GERMANY, Email: schieferdecker@fokus.gmd.de

Abstract
Recently, international standard bodies approved the third evolution of the TTCN test specification
language (TTCN-3) as a requirement to modernise and widen its application beyond pure OSI
conformance testing. Even though TTCN-3 makes the description of complex distributed test
behaviour much easier there is still a requirement from the user community to provide a visualisation
means for test specification, development and tracing. Message Sequence Charts (MSC) appeared to
be a particularly attractive candidate as a graphical means for visualising TTCN-3 test cases.
Therefore, in addition to the pure textual core language, TTCN-3 also defines a MSC profile called the
Graphical Presentation Format for TTCN (GPF). This paper describes some of the main concepts of
GPF, its use and application to real test suite examples.

1 Introduction
In general, test development still accounts for a significant portion of the effort required during the development of
software systems; sometimes accounting for as much as 50% of the overall effort. Consequently, much research has
focused on how the development and validation of test suites can be made easier and quicker. A first step towards
systematic test development has been done with test case specifications allowing the ratification of test suites at
industrial consortia, the unambiguous implementatio n of test suites and the comparison of test results. In this case, we
refer to the usage and evolution of the standardised test specification language TTCN, as an independent and formalised
means of describing functional test specifications. TTCN has been specifically developed to support black-box testing
on the basis of behavioural interface specifications of the System Under Test (SUT). Black-box testing means that
expected outcomes, as prescribed by the specification of the SUT, are compared with observed outcomes as produced
by executions of the SUT [1, 2, 14, 18]. If expected and observed outcomes differ, then a fault has been discovered.

However, practise has demonstrated [3, 10] that users gain further benefits (e.g. improved validation) when using
graphical languages during test specification and execution. In this case, the Message Sequence Chart (MSC) language
[22] appeared to be a particularly attractive candidate as a graphical means for visualising test specifications and test
traces. Where, MSC is comparable to UML Sequence Diagrams (SDs) [15, 21], but in addition to the pure graphical
representation provided by SDs, MSC also has a textual representation and a well-defined semantics. The purpose of
MSCs is to show how sequences of messages are interchanged between system components, or processes within a
system component and their environment. Therefore, MSCs are used throughout the system development cycle: (1) for
capturing requirements, (2) in combination with other description languages durin g system specification, (3) as a basis
for implementation, and (4) for the description of black-box tests in the testing phase.

Consequently, the third edition of the TTCN language (TTCN-3) [5] not only defines a textual representation, but it also
allows the definition of other presentation formats. At present, two presentation formats are defined: a tabular
presentation format (TPF) [6] that resembles the tabular format of previous TTCN editions, and an MSC-based
graphical presentation format (GPF) [4, 7]. In order to have an adequate means for representing test cases graphically,
within GPF certain test-specific extensions to MSC, such as port instances and test verdicts etc. are necessary. This also
allows for the visual tracing of test case executions.

The rest of the paper is organized in the following manner: An introduction to TTCN-3 and MSC is provided in Section
2. The details of GPF are presented in Section 3. An example based on the Dynamic Host Configuration Protocol
(DHCP) can be found in Section 4. Finally, an outlook to future work is given in Section 5.

2 An overall view of TTCN-3 and MSC
This section provides an introduction to TTCN-3 and MSC. Both languages form the basis for GPF.

2.1 TTCN-3
TTCN-3 is a language to define test procedures to be used for black-box testing of distributed systems with well defined
interfaces. As shown in Figure 11, TTCN-3 is a modular language and has a similar look and feel to a typical
programming language. However, in addition to the typical programming constructs, it contains all the important
features necessary to specify test procedures and campaigns.

The principle building block of the TTCN-3 core language is the module. A module is a self-contained and complete
specification, i.e. it can be parsed and compiled as a separate entity. A module consists of a module definitions part
(lines 2 – 36 in Figure 1), and an (optional) module control part (lines 37 – 44). The module definitions part specifies
the top-level definitions of the module. These definitions may be used elsewhere in the module, including the control
part or be imported from other modules. The module control part describes the execution order (possibly repetition) of
the actual test cases. Test cases are defined or imported from another module in the module definitions part and then
executed in the module control part.

A test case is defined in form of stimuli and expected responses, i.e., stimuli are given to the SUT, the reactions are
observed and compared with the expected ones. On the basis of this comparison, the subsequent test behaviour is
determined, a test verdict of either pass, inconclusive or fail is assigned or the test case ends.

A TTCN-3 test case (e.g. lines 14 – 36 in Figure 1) is executed by one or more test components. Each test case has a
Main Test Component (MTC), which automatically is created and started when the test case is invoked. A test case ends
when the MTC terminates. The behaviour of the MTC is defined in the test case body (lines 15 – 36). Further test
components may be created by the MTC or other already running test components. Each test component has an
associated component type (lines 4 – 13) that defines variables, constants, timers and ports local to each instance of that
type. The type of the MTC is referenced in the test case header (line 14).

The interfaces of a test component are defined by means of ports. Basically, a port is a FIFO queue to be used for
communication purposes. A port may support either asynchronous communication by means of asynchronous message
exchange or synchronous communication in form of remote procedure calls. The information exchanged at a port has to
be specified in an associated port type definition .

TTCN-3 provides a variety of communication operations and port control operations. Communication operations are:
send for the sending of messages (e.g. line 18 in Figure 1), receive for the reception of message (lines 21 – 22), trigger
to filter a message from a message stream, call for the invocation of remote procedures, getcall to accept procedure
calls from remote, reply to send replies for accepted calls, getreply to receive replies, raise to send exceptions, catch to
handle the reception of exceptions and check to examine the top element of a port. Ports can be started, stopped and
cleared by means of the port control operations start, stop and clear.

The operations receive , trigger, getcall , getreply, catch and check are specified together with the expected values.
They are executed only, if the received test data, e.g. message value, call record of a remote procedure or value of an
exception, matches the expected values. TTCN -3 offers the template mechanism for the specification of test data. A
template may be defined in the module definitions part for being used by reference in other places of a module or in -
line, i.e. at the place of its usage. In Figure 1 references to the templates DICOVER_s1 and OFFER_r1 (line 18 and
line 21) imported from module DHCP_declarations (line 3) are used. A template defines a single value or a whole

1 A detailed description of the test behaviour specified in Figure 1 will follow in Section 4.

range of values of a specific type. For the specification of value ranges matching mechanisms are provided which are
comparable to regular expressions. Templates defining a single value can also be used for the description of values to be
sent by means of the operations send, call, reply and raise.

1
2
3

4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44

45

module DHCP_Srv (boolean Srv_configuration){
 // --- Module definitions part
 import all from DHCP_declarations; // import from another module

 type component MTCtype { // component type definition
 port DHCP_LT LTPCO1;
 var OCTET_4 cltid1;
 var SrvID_Opt srvidopt1;
 var boolean blvalue;
 var OCTET_4 yip1;
 var OCTET_4 lease1;
 var OFFER_rxed offer_message;
 timer Tshort := Tshort_value;
 } // end MTCtype

 testcase AA_1 () runs on MTCType { // test case definition
 activate (Default_1); // activation of a default
 Pre_1 (); // function call
 cltid1 := select_xid ();
 LTPCO1.send (DICOVER_s1(cltid1, BROADCAST_Flag, HAddr1));
 // sending a message
 Tshort.start; // start of timer Tshort
 LTPCO1.receive (OFFER_r1(cltid1, BROADCAST_Flag, Haddr1))
 -> value rxed_offer_message; // reception of a message
 yip1 := rxed_offer_message.yiaddr;
 srvidopt1 := rxed_offer_message.opts.lease.time;
 lease1 := rxed_offer_message.opts.lease.time;
 Tshort.stop; // stop of timer Tshort
 if ((yip1!=NullAddr)and(srvidopt1.addr!=NullAddr)and(lease1!=ZeroTimer)) {
 verdict.set (pass); // setting of the test verdict
 Post_1 (cltid1, HAddr1, yip1, srvidopt1);
 }
 else {
 verdict.set (fail);
 }
 deactivate (Default_1); // deactivation of a default
 stop; // termination of the MTC
 } // end testcase AA_1

 control { // begin module control part
 if (Srv_configuration) {
 execute(AA_1); // execution of test case AA_1
 }
 else {
 execute(AA_2); // execution of the imported testcase AA_2
 }
 } // end module control part

} // end module DHCP_Srv */

Figure 1 TTCN-3 module

TTCN-3 uses defaults to handle unexpected behavior of the SUT. A default is defined in form of a named alternative
and can be activated and deactivated in a test case. A named alternative is a special TTCN-3 macro mechanism. In line
15 of Figure 1 the named alternative Default_1 is activated as default and in line 34 it is deactivated. Default_1 is
imported from DHCP_declarations.

The test configuration of test case AA_1 in Figure 1 is not distributed. The MTC port LTPCO1 of type DHCP_LT (cf.
line 5) is implicitly created when the test case is invoked and afterwards is used for the asynchronous communication
with the SUT.

 Test system

 IN OUT

 OUT IN

PTC

Abstract Test System Interface

SUT

Connected Ports

IN OUT

Real Test System Interface

Mapped Ports

IN OUT

MTC

Figure 1 TTCN-3 module

In case of a distributed test configuration, a test system interface in form of a component type definition has to be
referenced in the test case header. The test system interface defines the interface for the SUT. When a test case using a
distributed test configuration is invoked, the MTC is created implicitly together with its ports and may create further
test components by means of a create operation. The ports of all newly created components are also instantiated
implicitly and have to be connected (connect operation) to the ports of running test components or mapped (map
operation) to the test system interface. A connect operation instantiates a connection between two test components and
allows their communication. A map operation makes the port of a test component visible to the test system interface,
i.e. allows the communication between the test component owning the port and the SUT. After the creation of a
component and the connection and mapping of its ports, a test component is started by means of a start operation. The
component behavior is defined by a function reference in the start operation.

Figure 2 shows a distributed test configuration with two test components: an MTC and a parallel test component (PTC).
Communication among the test components is performed via connected ports and communication with the SUT is done
via mapped ports. Figure 2 also shows the distinction between test system, abstract test system interface, real test
system interface and SUT. Test system and abstract test system interface are defined in the scope of TTCN -3. The real
test system interface connecting the TTCN-3 runtime system and the SUT has to be provided by the test equipment.

In addition to the typical features of programming languages, further TTCN -3 language constructs allow the
specification and handling of timer (e.g. line 20 and line 26 in Figure 1), the description of interleaved test behaviour,
the use of external constants and functions, the import of data types and data values from other languages, e.g. ASN.1,
C++ or IDL, and to provide encoding information for test data. A complete and detailed description of TTCN-3 can be
found in [5], [8] or [11].

2.2 Message Sequence Charts
The Message Sequence Chart (MSC) language is a graphical means for describing the behaviour of distributed reactive
systems in form of traces. Syntax and semantics of MSC are defined by the International Telecommunications Union –
Telecommunications Standards Sector (ITU-T) in Recommendation Z.120 [22]. The MSC language comprises two
sorts of diagrams: MSC diagrams and High Level-MSC (HMSC) diagrams.

MSCs 2 describe the interaction of entities of a distributed system (Figure 3). The entities are called instances and are
represented by vertical lines with an instance head to which an instance name and (optionally) an instance type are
associated.The basic model of interaction in MSC is that of asynchronous communication by means of message passing
between instances or between instances and the environment. Messages are represented by arrows. The sending of a
message is described by the arrow origin and the consumption of a message is described by the arrow head. Message
name and (optionally) message parameters are specified near the corresponding message arrow. The environment of an
MSC is represented by the frame around the diagram area. Communication with the environment is described by
message arrows starting or ending at the environment frame. In addition to asynchronous communication, synchronous
communication can be modeled in form of method invocation by means of a message representing the invocation that
ends at the beginning of a method symbol and a corresponding reply message (represented by an arrow with a dotted
tail) that starts at the end of the method symbol . Between a call and the corresponding reply an instance may be blocked.
This can be specified by means of an suspension region .

2In the following the abbreviation MSC refers to the MSC language or an MSC diagram. In case of ambiguities we will
use the terms MSC language and MSC diagram instead.

Figure 3 MSC Example1

As shown in Figure 4, further instance behavior can be described with other MSC language constructs for action, timer
set, timer reset, timeout, instance create, instance stop and coregion . A coregion specifies that all events in the coregion
can happen in arbitrary order. The instance end symbol only is a graphical means to describe the end of an instance
behavior definition in the diagram and does not specify the termination of an instance.

Outside of a coregion, all events along an instance axis are ordered in time from top to bottom. Events on different
instance axes are in general not ordered. The only order for events on different instances is implied via messages, i.e., a
message must be sent before it is consumed.

MSC conditions (Figure 4) are the means to describe system states. Conditions may describe local states of one
instance, non-local states of several instances or global states of all instances in an MSC. In addition to state
representation, conditions may also be used as guards containing Boolean expressions.

Composition of event structures may be defined inside an MSC by means of inline expressions. The operators of inline
expressions are alt, loop, par , exc and opt. The alt operator defines alternative MSC sections, i.e. only one of them will
be executed, the loop operator defines the iteration of an MSC section, the par operator describes the parallel execution
of MSC sections, the exc operator allow to specify exceptional MSC behavior and the opt operator indicates optional
MSC sections. An example for an inline expression with an alt operator can be found in Section 4.

MSC references provide the possibility to structure an MSC in to several MSCs. The meaning of an MSC reference
(Figure 3) is defined by another MSC with the name of the reference inscription.

HMSCs provide the possibility to compose MSCs and HMSCs to complex behavior structures. Language constructs of
HMSCs are start , end, flow line, connector, parallel frame, reference and condition . An example for an HMSC (without
a parallel frame) is shown in Figure 53.

An HMSC diagram can be read like a flow graph. The detailed behavior is referenced by means of MSC references and
global states reached during the execution of the trace are described by means of conditions. The behavior description
begins with the start symbol and by following the flow lines the behavior is constructed from the meaning of the visited
MSC references. The parallel frame allows the parallel composition of MSCs. Connectors are only graphical means for
branching and joining of flow lines. End symbols denote the end of a trace.

3 The keyword execute in the MSC reference is not part of the standard MSC syntax. It is a GPF extension to denote the
execution of test cases. The figure will be re-used for the DHCP example in Section 4.

Initiator

msc Example1

Responder

ResponderType

Database CONreq

(num, data) call UIDreq

(num)

UIDreq_reply

(uid)

ICON

(uid, data)
CONreq

(num, data)

DataTransfer

method
symbol suspension

region

reference
symbol

environment
frame

message
name

message
arrow

message
parameter

instance kind instance head symbol

instance
name

MSC also supports data descriptions. The MSC approach for including data was not to define a special MSC data
language, but instead to provide an interface by which the data syntax can be checked and the MSC semantics can be
evaluated. This allows the use of arbitrary data languages within MSC.

MSCs and HMSCs can be collected in an MSC document (Figure 6). The document mechanism is also used for GPF
and, therefore, will be explained in Section 3.1.

Figure 4 MSC Example2

Figure 5 HMSC Control

InstOne

msc Example2

InstTwo

SigTwo

(d2)

SigThree

(d3)

coregion

action

instance
creation

SigOne

(d1)

MyFunc(d1,d2)

Wait

condition

instance
stop

T1
timer set

alt SigFour

(d4) T1

timer stop

T1

timeout Error

inline
expression

instance
end

msc Control

condition

start

when Srv_configuration

end

connector

when not(Srv_configuration)

execute (AA_1) execute (AA_2) reference

Figure 6 MSC document DHCP_Srv

3 The Graphical Presentation Format for TTCN-3
GPF is designed to describe TTCN-3 test behavior. Therefore GPF diagrams represent module control, functions, test
cases and named alternatives as the means for TTCN-3 test behavior descriptions. All GPF diagrams of a TTCN-3
module are collected in a document. This section provides an overview of the GPF extensions to MSC in order to obtain
a sufficient graphical presentation of TTCN-3 test behavior.

3.1 MSC documents and TTCN-3 modules
In TTCN-3 all data and behavior definitions are collected in a module. A TTCN-3 module also has a (optional) module
control part that defines the order and conditions under which the test cases shall be executed. In GPF, the counterpart
of a TTCN-3 module is the MSC document.

Figure 6 provides an example for a MSC document with the name DHCP_Srv. Dashed lines structure the document
into a data definitions part, a control part, a test cases part , a functions part and a named alts part.

Data and type definitions can be found in the data definitions part. MSC diagrams representing module control, test
cases, functions and named alternatives are referenced by means of references in the control, test cases, functions and
named alts part. Similar to TTCN-3 modules MSC documents may also be parameterized.

3.2 Data
TTCN-3 data types and values are brought into GPF using the mechanism to parameterize MSC with arbitrary data
languages. Data is incorporated into GPF in a number of places, such as document parameters, control variables,
verdicts, component and port instances, message values, timers, action boxes, and references. Data is used in two
distinguishable ways either statically, such as in the parameterization of an MSC diagram, or dynamically, such as in
the acquisition of a value through a message receipt. All declarations, values and type definitions are specified using the
TTCN-3 core notation that is placed, or referenced, within the data definitions part of the MSC document.

In GPF both, MSC documents and diagrams may be parameterized. An MSC reference must provide the actual
parameters whose scope is the diagram body. Parameters are treated as constants, i.e. they cannot be modified
dynamically.

mscducument DHCP_Srv (boolean Srv_configuration)

language TTCN3 data

 import all from DHCP_declarations; // import from another module

 type component MTCtype { // component type definition
 port LTPCO1_type LTPCO1;
 var OCTET_4 cltid1;
 var SrvID_Opt srvidopt1;
 var boolean blvalue;
 var OCTET_4 yip1;
 var OCTET_4 lease1;
 var OFFER_rxed offer_message;
 timer Tshort := Tshort_value;
 } // end MTCtype

data
definitions

part

Control
control

AA_1
testcases

functions

named alts

controt part

test cases
part

(empty)
functions part

(empty)
named alts

part

Variables are owned by single instances representing test components. This means that only the instance owning a
variable can define and change its value through the use of bindings. A binding can be considered to be a special form
of an assignment. It consists of an expression part and a pattern part that are connected by a bind symbol. The bind
symbol has left and right form both of which are equivalent, but which permit more natural reading of a binding
associated with a message. Figure 7 illustrates a simple message exchange in which the variable x, owned by instance
TC1, is bounded to an expression involving the variable y, owned by instance TC2.

Figure 7 Variable binding

3.3 Configuration
In TTCN-3, test configurations are related to component and port type definitions, and behavior descriptions, i.e., test
cases, functions and named alternatives. Where, the component and port type definitions are provided by the user within
the data definitions part of the MSC document. For test cases, functions and named alternatives corresponding MSC
diagrams may be provided.

Instances within the MSC diagrams either represent test components or ports (Figure 8). In order to distinguish the two
kinds of instances graphically, different graphical symbols can be used. Where port instances may be represented
explicitly as particular 'environmental’ instances by using dashed instance axes, or using the port keyword. Apart from
the FIFO order defined by the TTCN-3 semantics for connections, no further event order is defined for port instances.
For test components the standard event ordering for an MSC instance is assumed.

The GPF representation of the TTCN-3 configuration operations: create, map, start component, stop component ,
start port, clear port and stop port are shown in Figure 8.

The creation of a test component is represented by MSC create symbols, i.e. a dashed arrow pointing to the header of
the newly created instance. Mapping (and connection) ports has to be done by using the TTCN-3 map (and connect)
operations within action boxes. GPF represents the start of the execution of a test component by using a dashed start
arrow. Special start, clear and stop messages are used to represent the TTCN-3 operations for controlling ports, i.e.
start port, clear port and stop port. The termination of a test component (TTCN-3 stop operation) is described by
means of the MSC stop symbol.

The MSC stop symbol in combination with a return keyword and an (optional) return value underneath is also used to
represent the TTCN-3 return statement. A return statement describes the end of a function and the return of control
and an optional return value to the calling entity, i.e. module control, test case or function.

3.4 Asynchronous communication
Within GPF, asynchronous communication is described by means of messages (Figure 9). Along MSC instance axes
representing test components, a TTCN-3 send operation is represented by the origin of a message arrow and a TTCN-3
receive operation is described by an arrowhead. On top of the message arrow the message type may be given, and
below the message arrow a TTCN-3 message template has to be provided. Temp lates are the TTCN-3 mechanism to
specify message values. A template may be defined in the data definitions part of a MSC document and is then
referenced in the message, or is provided in form of an in-line definition. The message type is optional if the template is
referenced, i.e. the message type is provided in the template definition.

3.5 Synchronous communication
TTCN-3 supports remote procedure calls as a synchronous communication mechanism. Where, a test component can
either play the role of a calling party or the role of a called party.

TC1
msc Data_Example

TC2

MyMessage

(x := y + 1)

y := 3

Figure 8 GPF description of TTCN-3 configuration operations

Figure 9 Usage of messages and templates

FatherTC

msc Configuration

SonTC

stop

map
operation

component
creation

map(system.port, SonTC.MyPort)

start of
SonTC

FatherTC_Type

SonTC_Type

SonPort

SonPort_Type

test
component

port

start

SonBehaviour()

behaviour
of SonTC

FatherPort

FatherPort_Typ
e

clear

start

port control
operations

mtc

msc Data_Example

myPort

MyMessageType

MyTemplate1

MTCtype MyPortType

MyTemplate2

MyMessageType

(5, “DATA“)

message type and
template reference

template reference

inline template
definition

For the calling party, TTCN-3 provides the call operation for calling a remote procedure, the getreply operation for
handling the reply from remote, and the catch operation to catch exceptions raised by the remote side. The call
operation may be guarded with a duration in order to handle situations where the remote side neither replies nor raises
an exception. In GPF the operations are modelled by means of messages. The name placed above the message arrow
refers to the name of the remote procedure, and the operations are specified as prefixes to the message name. Values
sent and received by the different operations are given in TTCN-3 syntax below the message arrow.

In Figure 9a the main test component mtc plays the role of a calling party. A timer guards the call of the remote
procedure MyProc. After the call, mtc either receives a reply, catches an exception or the guarding timer expires. The
suspension region indicates the blocking of the test component during the call. TTCN -3 also supports non-blocking
calls. For the specification of non-blocking calls, the blocking area is omitted.

(a) Blocking call with reply, exception and timeout (b) Handling of an incomming call

Figure 9 Synchronous coummunication

For the called party TTCN-3 provides the getcall operation for accepting a call from remote, the reply operation to
reply to an accepted call and the raise operation to raise an exception if required by the testing situation. In GPF these
operations are again represented by messages with the operation names as prefixes to the message names. In addition an
activation region may be used to indicate the flow of control that belongs to the handling of the accepted call.

In Figure 9b the test component mtc plays the role of a called party. The test component accepts the call of procedure
MyProc by means of a getcall operation. Depending on the evaluation of the Boolean expressions in the guarding
conditions, the mtc replies to the call, or raises an exception.

3.6 Timer
The semantics for timer is identical in TTCN -3 and MSC. Therefore, GPF provides a one to one mapping for the
TTCN-3 timer operations set, reset and timeout to the corresponding MSC symbols (Figure 4). The TTCN-3 timer
operations running and read have no graphical counterpart in MSC. They have to be specified in action boxes or in
guarded conditions (running operation only) within a GPF presentation.

mtc

msc Synchronous_Communication_1

myPort

call MyProc

{var1, var2}

MTCtype MTCtype

getreply MyProc

ProcTemp -> value result

alt

catch MyExecption

-> value reason

20E-3

20E-3

fail

mtc

msc Synchronous_Communication_2

myPort

getcall MyProc

ProcTemp2 -> param(var1)

MTCtype MTCtype

reply MyProc

ProcTemp3 -> value result

alt

when S1

otherwise

raise MyException

ExceptionTemplate

3.7 TTCN-3 statements without graphical representation
In GPF, MSC action boxes are used for TTCN-3 statements having no graphical representation, e.g. bindings, operation
calls or function calls.

3.8 Alternative, cyclic and interleaved behavior
TTCN-3 provides several possibilities to describe alternative, cyclic and interleaved behavior. In GPF, all possibilities
are represented using MSC in-line expressions.

The TTCN-3 constructs for describing alternative behavior are the if-else and the alt statement. In GPF, both are
described by means of in-line expressions with an alt operator. For describing the branching conditions of a TTCN-3 if-
else statement GPF uses guarding conditions. The special keyword otherwise has been introduced for conditions to
emphasize the else branch (e.g. Figure 9b). The branching conditions of the TTCN-3 alt statement are represented in
GPF by using again guarding conditions and the conditions described in the template of the message to be received.

Cyclic behavior refers to the TTCN-3 loop statements for, while and do-while. In GPF all loop statements are
represented by means of inline expressions with a loop operator. The different exit criteria for the loops have to be
described by appropriate guarding conditions.

TTCN-3 also provides a possibility to describe interleaved behavior by means of the interleave statement. In GPF, a
new interleave operator for in-line expressions has been introduced to represent interleaved behavior in an appropriate
way.

3.9 Test verdicts

In TTCN-3, the verdict of a test component is handled as a special object whose value can only be accessed by the
operations set (for setting the verdict value) and get (for retrieving the actual verdict value). To emphasise the
importance of verdicts, GPF uses conditions, containing the verdict value as special keywords for setting component
verdicts. The verdict value may either be none, pass, inconc, or fail. An example for a verdict set operation can be
found in Figure 9a. A fail verdict is assigned after the timeout. For retrieving the verdict value, the get operation can be
used within an action box.

3.10 Default behavior
In TTCN-3, default behavior is used to handle unexpected or exceptional behavior of the SUT during the tes t run. The
TTCN-3 default is a macro mechanism, which introduces additional alternatives to receiving events. Macros are defined
in the form of named alternatives, and the macro expansion is driven by activate and deactivate statements.

In GPF, named alternatives may be represented in form of MSC diagrams and new graphical symbols for describing the
activation and deactivation of defaults have been introduced. The activated and deactivated defaults, i.e. MSC diagrams,
have to be referenced in activate and deactivate symbols. An example for the activation and deactivation of default
Default_1 can be found in Figure 10.

3.11 Function calls and execution of test cases

In TTCN-3, function calls and the execution of test cases are made by reference, i.e., the names of functions and test
cases are used to refer to the corresponding definitions. Where, in TTCN-3 the execute keyword is used to denote the
execution of a test case. In GPF, the same mechanism is used: MSC references are used to refer to MSC diagrams
representing TTCN-3 test cases and functions. Where, the execute keyword is placed within the MSC reference symbol
to denote the execution of a test case. Examples for a TTCN-3 execute statement and a function call are shown in line
39 and line 16 of Figure 1. The corresponding GPF descriptions can be found in Figure 5 and Figure 10.

4 A GPF example
This section presents a GPF example based on the Dynamic Host Configuration Protocol (DHCP) [12, 13]. DHCP is an
Internet protocol for automating the configuration of computers that use TCP/IP. DHCP can be used to e.g. assign IP
addresses automatically and to deliver TCP/IP stack configuration parameters such as the subnet mask and default
router.

Figure 6 presents the MSC document DHCP_Srv that visualizes the TTCN-3 module shown in Figure 1. In the data
definitions part definitions, test cases, functions and named alternatives are imported from document

DHCP_declarations and the test component type MTCtype is defined. An HMSC Control and the MSC AA_1
are referenced in the control and test cases part of the MSC document.

HMSC Control is shown in Figure 5. It defines the execution order of the test cases. In our case, the value of the
document parameter Srv_configuration determines whether test case AA_1 or test case AA_2 is executed. AA_2
is not referenced in document DHCP_Srv (Figure 6). It is imported from DHCP_declarations .

Figure 10 A GPF description of test case AA_1

mtc

msc AA_1

LTPCO1

DICOVER_s1(cltid1, BROADCAST_Flag, HAddr1)

MTCtype DHCP_LT

Pre_1 ()

OFFER_r1(cltid1, BROADCAST_Flag, Haddr1) -> value rxed_offer_message

Tshort

pass

activate (Default_1)

deactivate (Default_1)

cltid1 := select_xid()

yip1 := rxed_offer_message.yiaddr

srvidopt1 := rxed_offer_message.opts.lease.time

lease1 := rxed_offer_message.opts.lease.time

alt when
((yip1!=NullAddr) and

(srvidopt1.addr!=NullAddr) and
(lease1!=ZeroTimer))

Post_1 (cltid1, HAddr1, yip1, srvidopt1)

otherwise

fail

The MSC describing test case AA_1 is shown in Figure 10. It only contains the main test component MTC. MTC
activates the default behavior by referencing the named alternative Default_1 and afterwards executes its preamble
by calling the function Pre_1. Both, Default_1 and Pre_1 are not referenced in DHCP_Srv (Figure 6), i.e., they
are imported from DHCP_declarations .

After performing Pre_1, the variable cltid1 is initialized, a DISCOVER message is sent over port LTPCO1 and the
timer Tshort is started. Then, an OFFER message as response to the DICOVER message is awaited at port LTPCO1
and stored in variable rxed_offer_message. The following three action boxes describe the extraction of information
from variable rxed_offer_message, i.e., from the received OFFER message.

If the OFFER message is not received within the run-time of timer Tshort, the timer will timeout. The timeout will be
treated by the activated default behavior Default_1 .

In Figure 10 the other case is shown. The OFFER is received in time and the timer is cancelled. Subsequent to that, an
alternative is defined for the comparison of the received data values with the expected ones. If the received data values
are as expected, a pass verdict is assigned and the postamble Post_1 is invoked. Post_1 is also imported from
DHCP_declarations.

If the received data is not as expected, represented by the otherwise condition, the test verdict fail is assigned.
Finally, the default Default_1 is deactivated and the test case terminates.

The close relationship of TTCN3 and GPF can be seen by comparing the TTCN-3 core language description of module
DHCP_Srv (Figure 1) and the corresponding graphical presentation (Figure 5, 6 and 10). All TTCN-3 declarations, i.e.,
the import statement and the component type definition, can be found in the data definitions part of the MSC document.
The TTCN-3 module control part and the test case definition AA_1 are graphically represented by MSC diagrams.
Within the MSCs, all TTCN-3 constructs have straightforward and intuitive graphical representation.

5 Using GPF for the visualization of test traces
A test trace describes a concrete execution of a test case during a test campaign. Especially in cases where a test case
fails, such a test trace is very helpful for analysing the failure. Test traces can be easily represented in GPF on different
levels of abstractions: showing purely the messages exchanged between the test components and the SUT, or showing
in addition the function in which a message has occurred and giving timer information, or showing also assignments or
even showing further information on the test execution like default activation or start of timers etc. A sample test trace
for the example introduced in the previous section is shown in Figure 11.

Figure 11 A GPF trace of test case AA_1 shown in Figure 10

mtc

msc Trace_of_AA_1

LTPCO1

DICOVER_s1

MTCtype DHCP_LT

Pre_1 ()

OFFER_r1

Tshort

pass

Post_1 ()

6 Outlook
The first complete GPF version has been edited and covers the concepts presented in this paper, i.e. single component
definitions and static configurations. Included in this definition is a grammar definition and a mapping to the TTCN-3
core notation. Further work is planned to extend the existing GPF definition in order to handle multiple test components
and dynamic configurations. Ongoing, as part of these efforts we are working on the convergence of GPF with MSC
identifying how GPF concepts can be effectively represented as valid MSCs. Where this is not possible, extensions to
MSC will be proposed.

More advanced studies cover the efficient and user-friendly handling of incomplete GPF specifications, complex
behaviour and comprehensive documents [9, 16, 17]. Hybrid representations allowing the handling of TTCN-3 core
notation and MSCs in the same document are promising for the handling of incomplete GPF specifications. Hypertext -
like representations seem to be an adequate means for the intuitive presentation of complex and comprehensive MSC
specifications.

Commercial tool support for GPF is already available. Existing MSC tools can be used for test specification purposes4
(e.g. [19]), but the first new test tools supporting the whole GPF definition are also on the market (e.g. [20]).

Within the UML standards arena, MSC is being proposed as the sequencing notation for UML version 2.0. Where, the
adoption of MSC would naturally lead to the use of a MSC test profile. However, UML still lacks test specification
support. Therefore, we have driving a Request For Proposals (RFP) for UML test specification that would allow us to
propose GPF as a future UML test specification profile.

Bibliography
[1] ANSI/IEEE. Glossary of Software Engineering Terminology . ANSI/IEEE Std 729-1983, ANSI/IEEE Std. 729 -

1983, 1983.

[2] B. Beizer. Software Testing Techniques (Second Edition). Van Nostrand Reinhold New York, 1990.

[3] P. Baker, C. Jervis, D. King, An Industrial use of FP: A Tool for Generating Test Scripts from System
Specifications. Trends in Functional Programming, Proceedings of the Scottish Functional Programming
Workshop, Glasgow, UK, 1999.

[4] P. Baker, E. Rudolph, I. Schieferdecker, Graphical Test Specification – The Graphical Format of TTCN-3.
Proceedings of the 10th SDL-Forum, Copenhagen, June 2001, Lecture Notes in Computer Science, Springer,
June 2001.

[5] ETSI ES 201 873-1. Methods for Testing and Specification; The Tree and Tabular Combined Notation version 3
(TTCN-3); Part 1: TTCN-3 Core Language. European Telecommunications Standards Institute (ETSI), Sophia-
Antipolis, France, 2001.

[6] ETSI ES 201 873-2. Methods for Testing and Specification; The Tree and Tabular Combined Notation version 3
(TTCN-3); Part 2: TTCN-3 Tabular Presentation Format (TPF). European Telecommunications Standards
Institute (ETSI), Sophia-Antipolis, France, 2001.

[7] ETSI TR 101 873-3. Methods for Testing and Specification; The Tree and Tabular Combined Notation version 3
(TTCN-3); Part 3: TTCN-3 Graphical Presentation Format (GPF) . European Telecommunications Standards
Institute (ETSI), Sophia-Antipolis, France, 2001.

[8] J. Grabowski. TTCN-3 - A new Test Specification Language for Black-Box Testing of Distributed Systems .
Proceedings of the 17th International Conference and Exposition on Testing Computer Software (TCS'2000),
Theme : Testing Technology vs.Testers' Requirements, Washington D.C., June 2000.

[9] J. Grabowski, P. Graubmann, E. Rudolph. HyperMSCs with Connectors for Advanced Visual System Modelling
and Testing. Proceedings of the 10th SDL-Forum, Copenhagen, June 2001, Lecture Notes in Computer Science,
Springer, June 2001.

[10] J. Grabowski, D. Hogrefe. TTCN SDL- and MSC-based specification and automated test case generation for
INAP. Proceedings of the "8th International Conference on Telecommunication Systems (ICTS'2000) -
Modeling and Analysis", Nashville, March 2000.

4 If MSC editors are used, specific graphical GPF symbols have to be modelled by using keywords, naming conventions
or TTCN-3 core notation in other symbols.

[11] J. Grabowski, A. Wiles, C. Willcock, D.Hogrefe. On the Design of the new Testing Language TTCN-3. '13th
IFIP International Workshop on Testing Communicating Systems' (Testcom 2000), Ottawa, 29.8.2000-1.9.2000,
Kluwer Academic Publishers, August 2000.

[12] IETF rfc 2131. Dynamic Host Configuration Protocol. March 1997.

[13] IETF rfc 2132. DHCP Options and BOOTP Vendor Extensions. March 1997.

[14] G. J. Myers. The Art of Software Testing . John Wiley, 1979.

[15] E. Rudolph, J. Grabowski, P. Graubmann. Towards a Harmonization of UML-Sequence Diagrams and MSC. In:
'SDL'99 - The next Millenium' (Editors: R. Dssouli, G. v. Bochmann, Y. Lahav), Elsevier, June 1999.

[16] E. Rudolph, I. Schieferdecker, J. Grabowski. HyperMSC - a Graphical Representation of TTCN. Proceedings of
the 2nd Workshop of the SDL Forum Society on SDL and MSC (SAM'2000), Grenoble (France), June, 26 - 28,
2000.

[17] E. Rudolph, I. Schieferdecker, J. Grabowski. Development of an MSC/UML Test Format. FBT'2000 - Formale
Beschreibungstechniken für verteilte Systeme (Editors: J. Grabowski, S. Heymer), Shaker Verlag, Aachen, June
2000.

[18] I. Sommerville. Software Engineering . Addison Wesley, 1989.

[19] Telelogic AB. TAU product description. http:/ /www.telelogic.se/products

[20] Testing Technologies. TT Tools product description . http://www.testingtech.de/products/TTToolSeries.html

[21] J. Rumbaugh, I. Jacobson, G. Booch. The Unified Modelling Language, Reference Manual Version 1.1 . Rational
1997.

[22] ITU-T SG 10. Message Sequence Chart (MSC) . Rec. Z.120, Geneva 1999.

