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A Comparative Study to Benchmark
Cross-project Defect Prediction Approaches

Steffen Herbold, Alexander Trautsch, Jens Grabowski

Abstract—Cross-Project Defect Prediction (CPDP) as a means to focus quality assurance of software projects was under heavy
investigation in recent years. However, within the current state-of-the-art it is unclear which of the many proposals performs
best due to a lack of replication of results and diverse experiment setups that utilize different performance metrics and are
based on different underlying data. Within this article, we provide a benchmark for CPDP. We replicate 24 approaches proposed
by researchers between 2008 and 2015 and evaluate their performance on software products from five different data sets.
Based on our benchmark, we determined that an approach proposed by Camargo Cruz and Ochimizu (2009) based on data
standardization performs best and is always ranked among the statistically significant best results for all metrics and data sets.
Approaches proposed by Turhan et al. (2009), Menzies et al. (2011), and Watanabe et al. (2008) are also nearly always among
the best results. Moreover, we determined that predictions only seldom achieve a high performance of 0.75 recall, precision,
and accuracy. Thus, CPDP still has not reached a point where the performance of the results is sufficient for the application in
practice.

Index Terms—cross-project defect prediction, benchmark, comparison, replication
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1 INTRODUCTION

Defect prediction as a means to focus quality as-
surance has been an often addressed research topic
for a long time, with early work being performed
in the nineties, e.g., by Basili et al. [1]. In the last
decade, Cross-Project Defect Prediction (CPDP), i.e.,
the prediction of defects using training data from
other projects, grew from being an ignored aspect into
a quite large sub-topic of software defect prediction in
general. A recent mapping study [2] found 50 publica-
tions between 2002 and 2015 that specifically address
cross-project aspects. However, the survey also high-
lighted a lack of comparability and replication and
could, therefore, not determine which approaches are
best. The reasons for this are manifold, ranging from
evaluations on different data sets or using different
performance metrics, to different ways the training
data is set up, e.g., using training data from multiple
products together or using each product once for
training and report the mean performance achieved.
However, knowing which approaches work best is
important for the further advancement of the state-of-
the-art, because without such knowledge, it is hard to
claim that (or even if) the state-of-the-art is advanced
due to a new proposal.

Within this article, we perform a benchmark for
the comparison of the state-of-the-art of CPDP ap-
proaches. The contributions of this benchmark are:

• S. Herbold, A. Trautsch, and J. Grabowski are with the University of
Goettingen, Institute of Computer Science, Göttingen, Germany.
E-mail: {herbold,grabowski}@cs.uni-goettingen.de
alexander.trautsch@stud.uni-goettingen.de

• Approach Comparison: a systematic comparison
and ranking of 24 CPDP approaches based on 85
software products from five different data sets.

• Analysis Methodology: an analysis methodology
for the combination of rankings on different data
sets with different performance metrics into a
single overall ranking.

• Replications: the results of the benchmark are
completely reproducible; all results and tech-
niques are available online and as open source
[2], [3].

Within the remainder of this article, we will first
introduce the foundations in Section 2. We then pro-
ceed with the discussion of the related work in Sec-
tion 3. Then, we introduce the methodology of our
benchmark, including the research questions that we
answer through the benchmark, the data used, as well
as the performance metrics and evaluation strategy
in Section 4. Afterwards, we present the results of
the benchmark in Section 5 and discuss our findings,
including lessons learned and threats to validity, in
Section 6. Finally, we conclude the article in Section 7.

2 FOUNDATIONS

Within this section, we introduce the definitions we
use throughout this article, the general workflow of
CPDP, as well as the performance metrics we require
for for the discussion of the related work and our
benchmark.

2.1 Definitions and Notations
Within this article, we define the terms software prod-
uct, revision, and software project as follows:
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• A software product is a specific revision of a soft-
ware project. Hence, a software project may have
multiple products, which are different versions of
the software.

Additionally, we use the following notations to dis-
cuss the related work in Section 3.

• S denotes a software product used for training.
• S∗ denotes the target product of the defect pre-

diction.
• s denotes an instance of a product used for

training S.
• s∗ denotes an instance of the target product S∗.
• m(s) denotes the metric values of a metric m of

an instance s.
• m̂(s) denotes a transformation of a metric m of

an instance s.
• median(m(S)), resp. mean(m(S)) denote the me-

dian, resp. mean value of the metric m for the
product S.

2.2 General Workflow
Figure 1 depicts the general workflow of CPDP exper-
iments. Within this article, we consider the setting of
strict CPDP [4]. We have a data set with information
about software products. One of these software prod-
ucts is selected as target product. The other products
of the data sets are used for the defect prediction
model. If other revisions of the target product exist
in the data set, they are also discarded such that no
information from the same project context remains.

Three other variants of CPDP studies can be found
in the literature: mixed CPDP, Mixed-Project Defect
Prediction (MPDP), and pair-wise CPDP. With mixed
CPDP, old revisions of the target product are also
allowed for training, thereby mixing the cross-project
with the within-project context. While both strict and
mixed CPDP experiments are common, they were
always just referred to as CPDP in the past. The
differentiation between strict and mixed was recently
introduced by Herbold et al. [4]. MPDP goes one step
further and even allows some labelled data from the
target product itself [5]. In all of the above, multiple
products are used together to train the defect predic-
tion model. Pair-wise CPDP takes a different approach
towards using the training data. Here, the CPDP
approach is applied separately for each product in the
data set as training data. Then, the mean or median of
the performance of these pair-wise predictions is used
to estimate the performance of the CPDP approach.

2.3 Performance Metrics
We reference the seven performance metrics within
the discussion of the related work and our benchmark.
The first six metrics are recall,1 precision, accuracy, F-
measure, G-measure, and MCC. The metrics are defined

1. instead of recall, PD or tpr are also used in the literature. PD
stands for probability of detection and tpr for true positive rate.
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Fig. 1. Different types and general workflow of CPDP.
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as

recall =
tp

tp+ fn

precision =
tp

tp+ fp

accuracy =
tp+ tn

tp+ fn+ tn+ fp

F -measure = 2 · recall · precision
recall + precision

G-measure = 2 · recall · (1− pf)
recall + (1− pf)

MCC =
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn))

where tp, respectively, tn are the number of true
positive, resp., true negative predictions, fp, resp., fn
are the number of false positive, resp., false negative
predictions, and the probability of false prediction
pf = fp

tn+fp . The recall measures how many of the
existing defects are found, the precision measures how
many of the found results are actually defects, and the
accuracy the percentage of correct predictions. The F-
measure is the harmonic mean between recall and preci-
sion and the G-measure is the harmonic mean between
recall and pf. MCC stands for Matthews Correlation
Coefficient and it measures the correlation between
the observed and predicted classifications with val-
ues in [−1, 1]. Positive values indicate a correlation,
negative values indicate an inverse correlation, and
values close to zero indicate no correlation at all.

The seventh metric is the Area Under the ROC
Curve (AUC), which is defined using the Receiver
Operating Characteristic (ROC). ROC is the curve of
pf plotted versus the recall. The value is distributed
between zero and one, a value of 0.5 indicates a
performance similar to random guessing.

3 RELATED WORK

The discussion of literature related to this article is
two-fold: First, we discuss the literature on CPDP.
Second, we consider other benchmarks for defect
prediction and how they influenced our work.

3.1 Cross-Project Defect Prediction (CPDP)
Our discussion of CPDP is based on the mapping
study by Herbold [2]. We divide the presentation
into two parts: related work that was replicated as
part of our benchmark and related work that was
not replicated. Our criteria for replication were the
following.

• Publication in or before December 2015.
• The approach for CPDP does not require any

labeled data from the target product, i.e., Mixed-
Project Defect Prediction (MPDP).

• The approach is based on software metrics that
are based on the source code or the source code

history. Other information about the training or
target product, like the source code itself or con-
text factors are not required.

• The approach works with the same metrics for
the target and training data, i.e., using data from
sources with different metrics is not considered.

Using these criteria, we determined 26 publications in
which 24 approaches for CPDP were proposed which
we replicated. These publications are discussed in
tables 1–3, including a short description, adoptions for
the replication if any where required, and an acronym
which we use in the following to refer to the approach.
In tables 4–5, we discuss the related work that was
not replicated, including a short description and the
reason for the exclusion.

3.2 Defect Prediction Benchmarks

To the best of our knowledge no benchmark on
CPDP exists, yet. Hence, we cannot put the results
of this benchmark or its setting directly in context
with another CPDP benchmark. Instead, we discuss
three benchmarks on Within-Project Defect Prediction
(WPDP) and the procedures they used to rank results.

The first benchmark was performed by Lessmann et
al. [60] and evaluated the impact of different classifiers
on WPDP. Within their benchmark, the authors follow
the proposal by Demšar [61] to use the Friedman
test [62] to determine if the differences in performance
between classifiers can be explained by randomness
or are statistically significant. Then, they use the post-
hoc Nemenyi test [63] to determine, which of the
classifiers differ significantly. The second benchmark
was performed by D’Ambros et al. [64] using different
kinds of metrics and different classification models.
The evaluations were also based on the Friedman test
and the Nemenyi test.

The third benchmark was conducted by Ghotra et
al. [65] performed with the same goal as the bench-
mark by Lessmann et al., i.e., the comparison of the
impact of classifiers on the performance of WPDP.
However, in comparison to the benchmarks by Less-
mann et al. and D’Ambros et al., the authors did not
follow the proposal by Demšar for the comparison
of results. Instead, they used a different statistical
test, i.e., the Scott-Knott hierarchical clustering. The
Scott-Knott clustering is based on the results of an
ANalysis Of VAriance (ANOVA) statistical test [66].
Based on the ANOVA results, clusters are determined,
whereas the classifiers in each cluster are significantly
different from the classifier in the other clusters. By
sorting these clusters by their mean value, a ranking
of the classifiers is created. Ghotra et al. argue that
using Scott-Knott has the advantage that the gen-
erated clusters do not overlap, i.e., a fixed ranking
is generated. This is not necessarily achieved by the
Nemenyi test, where the results may overlap, which
hinders a clear ranking of approaches. The drawback
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TABLE 1
Related work on CPDP included in the benchmark (Table 1/3). Acronyms are defined following the authors and

reference in the first column.

Publication Short Description Adoption for Benchmark
Khoshgoftaar et al.,
2008 [6] (Khoshgof-
taar08)

The authors propose to use a classifier trained for each product
in the training separately and then use the majority vote of the
classifiers for each product for the classification. The authors also
investigate other approaches, however, they determine that the
majority vote is the best among the suggestions.

As is.

Watanabe et
al., 2008 [7]
(Watanabe08)

The authors propose to standardize the target data as m̂i(s
∗) =

mi(s
∗)·mean(mi(S))

mean(mi(S∗)) to improve the homogeneity between train-
ing and target data.

Standardization of the training data
instead of the target data, i.e.,m̂i(s) =
mi(s)·mean(mi(S

∗))
mean(mi(S))

.
Turhan et al., 2009 [8]
(Turhan09)

The authors propose to first transform the metric data with the
logarithm and then apply a relevancy filter to the available training
data based on the k-Nearest Neighbor (NN) algorithm. Through
the relevancy filter, the k nearest instances to each instance in the
target data are selected. The authors suggest to use k = 10.

As is. The original publication by
Turhan et al. leaves room for interpre-
tation when the logarithm is applied to
the data, i.e. before the relevancy filter
or after the relecvancy filter and only
to the classification. We use the former
interpretation, as we think that if skew
is treated, it makes most sense to treat
it for all skew-sensitive algorithms,
which includes k nearest neighbor fil-
tering.

Zimmermann et al.,
2009 [9] (Zimmer-
mann09)

In addition to a large study on the feasibility of CPDP in general,
the authors propose the training of a decision tree based on context
factors and metric distributions that can be used to estimate which
product is well suited for the defect prediction of another product.
The decision trees can be used to improve either recall, precision,
or accuracy.

We only consider the metric distribu-
tions and no context factors. Moreover,
we use a single tree based on the F-
measure as we require a single criterion
for full automation of the approach.
The F-measure is close to the original
approach as it is the harmonic mean
of recall and precision.

Camargo Cruz and
Ochimizu, 2009 [10]
(CamargoCruz09)

The authors propose to standardize the target and training data
using the logarithm and the median of the training data as
reference, i.e., m̂i(s) = log(1+mi(s))+median(log(1+mi(S)))−
median(log(1+mi(S

train))). The authors consider a single train-
ing product as reference.

We consider multiple products
as training data. Therefore, we
use the target data S∗ instead
of the training data Strain as
reference point, i.e., m̂i(s) =
log(1 + mi(s)) + median(log(1 +
mi(S)))−median(log(1 +mi(S

∗))).
Liu et al., 2010 [11]
(Liu10)

The authors propose S-expression trees trained using a genetic
program with a validation-and-voting strategy that uses parts of
the training data for internal validation and the majority votes of
multiple genetic programs for classification. Other approaches for
the selection of the best result for the genetic program are also
considered, but the authors determined validation-and-voting to
be superior to them.

As is.

Menzies et
al., 2011 [12]
and 2013 [13]
(Menzies11)

Creation of a local model through clustering of the training data
with the WHERE algorithm and afterwards classification of the
results with the WHICH rule learning algorithm. Separate WHICH
rules are created for each cluster to create local models.

As is, but also with other classifiers in
addition to WHICH.

Ma et al., 2012 [14]
(Ma12)

The authors propose to apply data weighting based on the simi-
larity using the concept of gravitation. The weights are calculated
as ws = simattss

(p−simattss+1)2
, where simatts are the number of

attributes of an instance whose value is within the range of the
target data and p the number of attributes. The weighting is used
together with the Naı̈ve Bayes algorithm and the approach is
coined Transfer Naı̈ve Bayes.

As is, but also with other classifiers in
addition to Naı̈ve Bayes.

Peters and Menzies,
2012 [15] (Peters12)

The authors propose a data privacy mechanism called MORPH
that should not negatively affect the predictions results. With
MORPH, all instances s are randomly modified using their nearest
unlike neighbor sNUN , i.e., the closest instance that has a different
classification, such that mi(s) = mi(s) + r · (mi(s)−mi(s

NUN ))
with r a random value between 0.15 and 0.35.

As is.

Uchigaki et
al., 2012 [16]
(Uchigaki12)

The authors propose a logistic ensemble, i.e., a collection of
logistic regression models over the single attributes. The weighted
majority vote of the single attribute models determine the overall
classification. The weights are determined using the goodness of
fit of the model.

Since the authors are vague on the
definition of goodness of fit they are
using, we decided to use MCC.

Canfora et al.,
2013 [17] and
Canfora et
al., 2015 [18]
(Canfora13)

The authors propose a multi-objective approach called MultiOb-
jective DEfect Predictor (MODEP). They use a genetic program
to estimate the coefficients of a logistic regression model that is
optimal in terms of both cost and effectiveness, i.e., that finds
as many defects for as little costs possible. The outcome of the
training is a family of logistic regression models, each of which
is optimal for a specific combination of effectiveness measured in
recall and cost measured in Lines Of Code (LOC) that must be
reviewed.

Since the approach yields a family of
classifiers, but we require a single clas-
sifier as outcome, we use the approach
with a fixed effectiveness with a recall
of 0.7. Hence, we will select the classi-
fier that has the minimal costs and at
least a recall of 0.7.
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TABLE 2
Related work on CPDP included in the benchmark (Table 2/3). Acronyms are defined following the authors and

reference in the first column.

Publication Short Description Adoption for Benchmark
Peters et al.,
2013 [19] (Peters13)

The authors suggest the relevancy filter CLIFF that can be used
together with the MORPH data privatization that was previously
proposed. CLIFF uses a combination of binning for each metric
and the conditional probability of the classifications for each bin.
This way, the power of each instance is calculated and then the
p percent of the instances with the highest power are selected.
Afterwards, the data is privatized with MORPH.

We use p = 40% within the benchmark
as this percentage yields the best re-
sults within the original study.

Herbold, 2013 [20]
(Herbold13)

The author proposed to use the k-NN algorithm for the relevancy
filtering of products. The k-NN uses the distances between the
distributional characteristics of the products to determine the
neighborhood. The authors suggest to select k = b#products

2
c

of the products for training. Additionally, the authors propose a
strategy they refer to as equal weighting to treat a potential bias in
the data. The approach works by weighting the training data such
that the overall weight of the defect-prone instances is the same
as for the non-defect-prone instances. The authors also consider
relevancy filtering of products using the EM clustering algorithm,
but this approach is outperformed by the k-NN algorithm.

As is.

Z. He et al., 2013 [21]
(ZHe13)

The authors propose a relevancy filter for products as well as an
attribute selection approach using the separability of the training
data from the target data. Concretely, they train a logistic regres-
sion model that tries to differentiate between a training product
and the target product. The accuracy of this model is used as
foundation for the separability. The authors suggest to select k
products that cannot be separated easily from the target data,
i.e., where the separation has a low accuracy. Then, the attributes
with the highest information gain for the separation are removed,
as they are likely different between the training and target data.
Afterwards, undersampling is applied to the data of each project.
Finally, the authors propose to use a bagging approach with one
classifier trained for each of the k selected products and the
majority vote as overall classification.

The authors use k = 10 products for
their data selection, which is about one
third of the data. Since some data sets
we use have fewer products, we set
k = b#products

3
c for all data sets.

Nam et al., 2013 [22]
(Nam13)

The authors suggest a combination of standardization and Trans-
fer Component Analysis (TCA), which then leads to the TCA+
approach. First, they determine which of five different standard-
ization approaches should be selected: none, min-max normaliza-
tion, Z-score standardization, Z-score standardization where all
products are standardized based on all training data, and Z-score
standardization where all products are standardized based on the
target data. Then, the TCA is applied to determine a mapping of
the training and target data to a homogeneous metric space.

As is.

Panichella et
al., 2014 [23]
(Panichella14)

The authors propose a COmbined DEfect Predictor (CODEP), i.e.,
a classifier that is trained not directly on the training data, but
indirectly on the outcome of other classifiers, which are trained
on the training data. This way, CODEP combines the output
of other classifiers into one meta-classifier. For the combination,
the authors propose Logistic Regression and Bayesian Networks,
as internal classifiers the authors propose Alternating Decision
Trees, Bayesian Networks, Decision Tables, Logistic Regression,
Multilayer Perceptrons, and RBF Networks.

As is.

Ryu et al., 2014 [24]
(Ryu14)

The authors propose a similarity based resampling approach that
is used in combination with boosting. First, roughly 10% of the
training data are selected randomly as hold-out data to evaluate
the boosting results. Then, for each boosting iteration, the data is
resampled based on the similarity. The similarity is determined
using the data weighting approach proposed by Ma et al. [14].
The boosting itself is AdaBoost [25], with the difference being the
similarity-based sampling.

As is.

P. He et al., 2015 [26]
(PHe15)

The authors propose to only use the best metrics for the training of
prediction models. To determine the best metrics, the authors train
a Within-Project Defect Prediction (WPDP) prediction model for
each product in the training data. Then, they count how often each
metric is used in the prediction models as a measure for how good
an metric is and determine the best k metrics. Then, the optimal
best metric set is calculated as a subset of pair-wise uncorrelated
metrics of the best metrics that have the largest overlap with the
subset of metrics that is determined by a Correlation-based Feature
Subset (CFS) [27] metric selection.

As is, except that we automatically
pick the optimal k based on the over-
lap with the CFS metrics, while this
is done through visual analysis in the
original publication. Moreover, if the
optimal k > 30, we set k = 30 to limit
the size of the power set that is used
to determine the optimal subset.
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TABLE 3
Related work on CPDP included in the benchmark (Table 3/3). Acronyms are defined following the authors and

reference in the first column.

Publication Short Description Adoption for Benchmark
Peters et al.,
2015 [28] (Peters15)

The authors propose LACE2 as an extension of CLIFF and
MORPH for privatization. With LACE2, the authors introduce a
shared cache, in which data owners add their data one after the
other. New data is only added, if it is not already represented
in the data. To this aim, the authors propose a variant of the
leader-follower algorithm. With this variant, the authors check
how close a new instance is to its nearest unlike neighbor in the
cache. Depending on the distance, LACE2 decides if an instance
should be added. This way, not all data from all products is added
to the cache, which automatically improves the privacy as fewer
data needs to be shared.

As is.

Kawata et al.,
2015 [29] (Kawata15)

The authors propose to use the DBSCAN clustering algorithm [30]
as a relevancy filter for the data. To this aim, the authors propose to
cluster all training data together with the target data. All instances
from the training data that are in the same cluster as any instance
of the target data are used for training.

As is.

Y. Zhang et
al., 2015 [31]
(YZhang15)

The authors propose the usage of the ensemble classifiers Average
Voting and Maximum Voting, which internally use the classifiers
Alternating Decision Trees, Bayesian Networks, Decision Tables,
Logistic Regression, Multilayer Perceptrons, and RBF Networks.
Moreover, the authors propose to use Bagging [32] and Boost-
ing [25] for the classifiers Logistic Regression and Naı̈ve Bayes.

As is.

Amasaki et
al., 2015 [33]
(Amasaki15)

The authors propose a combination of attribute selection and
relevancy filtering. First, the attributes are selected such that no
attributes are remaining, whose value is not closest to any metric
value. Then, the instances are filtered using the same principal,
such that no instance is remaining, which is not the closest to any
other instance. All this is performed on log-transformed data.

As is.

Ryu et al., 2015 [34]
(Ryu15)

The authors propose a relevancy filter based on the idea of string
distances, which basically works on the number of metric values
that are different. All entities that are not in the neighborhood of
a target instance are removed from the training data. Before the
relevancy filtering, the authors remove outliers using Mahalanobis
distance [35]. Moreover, the authors use the LASER classification
scheme [36], which wraps a machine learning classifier such that
it first checks if a classification can be done using the immediate
neighborhood of an instance, before applying a machine learning
classifier.

As is.

Nam and Kim,
2015 [37] (Nam15)

The authors propose a fully automated unsupervised approach
for defect prediction called CLAMI, which we included because
it could render the need for cross-project data moot. CLAMI
consists of two parts: Clustering and LAbeling (CLA) for the
labeling of the training data using the metric data by counting
how many attribute values are above the median for the attribute
and Metric and Instances selection (MI) for the selection of a subset
of attributes and instances that is consistent, i.e., such that all no
attributes of any instance violate the labeling scheme.

As is.

of using ANOVA and Scott-Knott are the assump-
tions of ANOVA: the normality of the residuals of
the distribution and homoscedasticity of the data. In
comparison, Friedman and post-hoc Nemenyi test are
non-parametric.

All three benchmarks have in common, that they
base their rankings on single performance metrics,
e.g., the AUC and on a single data set. In comparison,
we consider a ranking using multiple metrics and
multiple data sets within our benchmark.

4 BENCHMARK METHODOLOGY

Within this section, we describe the methodology that
we followed to perform our benchmark. We will first
formulate the research questions which we answer

using this benchmark. Then, we describe the data
sets that we use as foundation for our analysis. After-
wards, we discuss which machine learning classifiers
were used for the predictions and how we established
performance baselines. Furthermore, we describe the
evaluation strategy for each of the research questions.
Finally, we fix the scope of our benchmark through
some additional remark regarding the limitations due
to our replication of approaches.

4.1 Research Questions

With our benchmark, we want to answer the follow-
ing five research questions:

• RQ1: Which CPDP approaches perform best in
terms of F-measure, G-measure, AUC, and MCC?
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TABLE 4
Related work on CPDP that was not included in the benchmark (Table 1/2).

Publication Short Description Reason for Exclusion
Briand et al.,
2002 [38]

An analysis if a prediction model trained for one project is
applicable to another project.

No specific approach for CPDP pro-
posed.

Nagappan et al.,
2006 [39]

A general analysis of the suitability of cross-project data for defect
prediction. They determined that CPDP is possible with data from
similar projects.

No specific approach for CPDP pro-
posed.

Jureczko and
Madeyski, 2010 [40]

Relevancy filtering of products using self-organizing maps. Excluded because the clustering ap-
proach allows for products to not be
clustered at all, hence, the approach
would only be applicable to a subset
of the data.

Turhan et al., 2011 [5] Augmentation of within-project training data with cross-project
data by using a k-NN relevancy filter for the cross-project data to
create a MPDP model.

MPDP is out of scope.

Rahman et al.,
2012 [41]

The authors propose the usage of the metric AUCEC, a cost-
sensitive variant of AUC that takes the LOC that are reviewed
into account.

No specific approach for CPDP pro-
posed.

Turhan, 2012 [42] An overview on the problems due to data set shift, i.e., differences
between training and target products and a taxonomy how such
problems can be handled.

No specific approach for CPDP pro-
posed.

Z. He et al., 2012 [43] The authors study how well groups of three products are suited
for CPDP of another product. Through a brute-force search, they
determine the best case performance, i.e., the best set of three
products for the training of another product. They use the results
of this brute force search to define a decision tree for the selection
of the best group of three products as an adoption of the decision
tree approach proposed by Zimmermann et al. [9].

The decision tree approach proposed
is an adoption of the decision tree
proposed by Zimmermann et al. [9]
and, thereby, already covered in the
benchmark.

Peters et al.,
2013b [44]

A relevancy filter based on the k-NN algorithm that, in compari-
son to the work by Turhan et al. [8], selects the instances based on
the neighborhoods of the training data instead of the target data.

The publication was withdrawn
(http://de.slideshare.net/
timmenzies/msr13-mistake (last
checked: 2016-07-20)) and no new
evidence was provided afterwards
that the approach is working.

Kocaguneli et al.,
2013 [45]

A general discussion of the cross-project problem for defect pre-
diction and effort prediction.

No specific approach for CPDP is pro-
posed.

Turhan et al.,
2013 [46]

An extension of their previous work on MPDP [46], that focuses
on the impact of using different quantities of within-project data.

MPDP is out of scope.

Singh et al., 2013 [47] Experiments on pair-wise CPDP without any specific approach. No specific approach for CPDP is pro-
posed.

F. Zhang et al.,
2014 [48] and
F. Zhang et al.,
2015a [31]

The authors propose an approach for the transformation of train-
ing data based on the clustering of context factors. First, the
software is clustered using the context factors, and in a second
step, the metric values are transformed to the values 1, 2, . . . , 10
depending on the decile they fall in within the cluster.

In comparison to Zimmermann et
al. [9], who use context factors in ad-
dition to software metrics, approaches
based on only context factors are out
of scope.

Fukushima et al.,
2014 [49] and
Kamei et al.,
2015 [50]

The authors discuss the application of CPDP in a Just In Time
(JIT) setting, i.e., to predict defective changes. To this aim, the
authors propose a relevancy filter based on the correlation of
metrics between software products to use only the products with
the strongest correlations for training. Additionally, the authors
also consider to train bagging predicts, same as Khoshgoftaar et
al. [6] and Z. He et al. [21].

JIT defect prediction is out of scope.

Mizuno and
Hirata [51], 2014

The authors propose a text-based approach for defect prediction
based on tokenizing the source code and differentiating between
comments and code, and reducing the code to its basic structure.

Text classification based on the source
code is out of scope.

Chen et al., 2015 [52] The authors propose an approach called Double Transfer Boosting,
a boosting variant for MPDP that first selects similar data using k-
NN relevancy filtering [8], then applies SMOTE for oversampling
and uses data weighting after Ma et al. [14]. The boosting works
with two data sets: a small within-project data set and a larger
cross-project data set. The within-project data is favored during
boosting with the intent to tailor the outcome to the target domain.

MPDP is out of scope.

Ryu et al., 2015a [53] The authors propose a MPDP approach for boosting of classifiers
that internally uses some within-project data together with the
cross-project data. The approach is based on their earlier work [24].
The major difference is that they allow for other classifiers than
the Support Vector Machine (SVM) and use within-project data
together with cross-project data.

MPDP is out of scope.
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TABLE 5
Related work on CPDP that was not included in the benchmark (Table 2/2).

Publication Short Description Reason for Exclusion
Nam and Kim,
2015a [54]

The authors propose an approach to use data with different
software metrics for CPDP. The approach is based on a pair-wise
correlation analysis between all metrics of the training and target
data. Using a correlation threshold to select candidate matches,
the authors apply a bipartite matching algorithm to determine a
set of highly correlated metric matches between the training and
target data, in which all metrics occur only once. The matches are
then used to train a classifier.

Data sources with different metric sets
are out of scope.

Jing et al., 2015 [55] The authors propose an approach to use data with different
metrics for CPDP. To this aim, they define the Unified Metric
Representation (UMR), a combination of the metric sets of different
domains, where all missing metric values are replaced with zeros.
Then, the authors apply Canonical Correlation Analysis (CCA)
to determine a transformation of the UMR that maximizes the
correlation between the training and target data in order to create
homogeneous training data.

Data sources with different metric sets
are out of scope.

Cao et al., 2015 [56] The authors propose an approach where they combine outlier re-
moval using the interquartile distances with TCA [22] to transform
the training and target data such that they are homogeneous. Then,
they propose to train a neural network with a data weighting
strategy that takes a potential bias in the data into account.

The level of detail provided in the
paper was not sufficient for replication
because the specifics of the neural net-
work definition, e.g., the layer struc-
ture, were missing.

Jureczko and
Madeyski, 2015 [57]

The authors analyze how well products from different sources
(open source, academic, proprietary) are suited for the prediction
of defects from the other sources. The focus on the study is on
which metrics are most important, depending on the data.

No specific approach for CPDP pro-
posed.

Herbold, 2015 [3] The authors proposed a benchmarking tool for CPDP built around
WEKA [58].

No specific approach for CPDP pro-
posed.

Altinger et al.,
2015 [59]

The authors investigated the feasibility of CPDP in the automotive
domains and discovered through a correlation analysis and Prin-
ciple Component Analysis (PCA) that fundamental assumptions
required for defect prediction based on code metrics are not
fulfilled, i.e., that there is an overlap between the defective regions
in the training and target data.

No specific approach for CPDP pro-
posed.

• RQ2: Does any CPDP approach consistently ful-
fill the performance criteria for successful predic-
tions postulated by Zimmermann et al. [9], i.e.,
have at least 0.75 recall, 0.75 precision, and 0.75
accuracy?

• RQ3: What is the impact of using only larger
products (> 100 instances) with a certain bal-
ance (at least 5% defective instances and at least
5% non-defective instances) on the benchmark
results?

• RQ4: What is the impact of using a relatively
small subset of a larger data set on the benchmark
results?

The reason for RQ1 is that in the current state of
conducting CPDP experiments [2], all these perfor-
mance metrics are frequently used and researchers
have good arguments for and against any of these
metrics. Since we are not aware of any conclusive ar-
gument with which we could decide for only a single
of those four metrics, we instead decided to go the
opposite way: determine the performance in terms of
all the metrics and, thereby, combine the advantages
of the different metrics. This gives a more holistic view
on the performance of the CPDP approaches. The
reason for RQ2 is that we want to investigate how far
CPDP has come. One popular result from their work
from 2009 was, that Zimmermann et al. [9] found that

less than three percent of CPDP prediction achieve
this desired threshold. By revisiting this threshold,
we want to determine if and how well this threshold
performance is achieved by the current state of the
art.

Subsetting by either only filtering out few projects
(e.g., [43], [21], [26], [20], [33]) or working with a
relatively small selection of products are both com-
mon in the defect prediction literature (e.g., [12],
[13], [15], [17], [18], [19], [23], [28], [31], [54]). The
analysis of RQ3 and RQ4 allows us to gain insights
into how subsetting affects the overall performance
determined by defect prediction experiments. There
are good arguments both for increasing or decreasing
performance due to subsetting. For example, a subset
means less data for training, which may mean less
generalization and, therefore, worse performance. On
the other hand, a subset has less variance in the data,
which could increase the performance.

4.2 Data
Our benchmark evaluates CPDP approaches on five
publicly available data sets. We give an overview
of the data sets, including the number of products
and number of metrics. The complete list of metrics,
products, and information about the number of in-
stances and defect prone instances can be found in



0098-5589 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2724538,
IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

the appendix. Please note that the benchmarking of
techniques, that combine data from different data sets
(e.g., [54], [55]) is out of scope of this benchmark.
Therefore, we describe each data set on its own.

4.2.1 JURECZKO / FILTERJURECZKO / SELECT-
EDJURECZKO

The first data set was donated by Jureczko and
Madeyski [40].2 The complete data set consists of 48
product releases of 15 open source projects, 27 product
releases of six proprietary projects and 17 academic
products that were implemented by students, i.e., 92
released products in total. As metrics, they collected
20 static product metrics for Java classes, as well as the
number of defects that were found in each class. The
defect labels are extracted from the SourceCode Man-
agement system (SCM) using a regular expression. We
do not use the proprietary products in our benchmark
to avoid mixing closed and open source data, which
would add a potential threat to the validity of our
results. Moreover, three of the academic products
contain less than five defective instances, which is too
few for reasonable analysis with machine learning.
Hence, we use 62 open source and academic products,
to which we refer as JURECZKO in the following.
Additionally, we consider a second instance of this
data set to which we refer to as FILTERJURECZKO
for which we require at least 100 instances for each
product and at least 5% of the data to be defective
and at least 5% of the data to be non-defective.
The FILTERJURECZKO data contains 39 open source
products and two academic products. We use the
FILTERJURECZKO data to evaluate the impact of
such a filtering of products on the mean results in
order to answer RQ3. The criteria are based on the
filtering performed in the literature: Herbold [20]
and Amasaki et al. [33] use only products with at
least 100 instances, the selected projects by Z. He et
al. [43], [21] and P. He et al. [26] also only contain
larger products with at least 100 instances and only
products with at least 5% of the data within each class.
Furthermore, we use with SELECTEDJURECZKO a
third combination of products from the overall data.
The SELECTEDJURECZKO data contains 10 hand-
picked products from different open source projects.
The reason for using the SELECTEDJURECZKO data
is that using such a small subset is quite common in
defect prediction literature (e.g., [12], [13], [15], [17],
[18], [19], [23], [28], [31], [54]). Within this work, we
use the same subset as it is used in a recent publication
by Peters et al. [28]. The comparison of this subset
with the JURECZKO data will allow us to estimate the
impact on the mean results of using a smaller subset,
that allows better insights into single results in order
to answer RQ4.

2. The data is publicly available online: http://openscience.us/
repo/defect/ck/ (last checked: 2017-05-19)

4.2.2 MDP

The second data set is the preprocessed version of the
NASA Metrics Data Program (MDP) data provided by
Shepperd et al. [67].3 The data contains information
about 12 products from 6 projects. The reason why we
use the preprocessed version by Shepperd et al. is that
Gray et al. [68] noted problems with the consistency of
the originally published MDP data, which Shepperd et
al. resolved. The projects in the data sets share 17
static source code metrics. Information on how the
defect labels were created is not available. Within our
benchmark, we use all 12 products from this data set
and refer to this data set in the following as MDP.

4.2.3 AEEEM

The third data set was published by D’Ambros et
al. [69]4 and contains data about five Java products
from different projects. For all five products, 71 soft-
ware metrics are available, including static product
metrics, process metrics like the number of defects in
previous releases, the entropy of code changes, and
source code churn, as well as the weighted churn and
of source code metrics (WCHU) and linearly decayed
entropy of source code metrics (LDHH). The study by
D’Ambros et al. concluded that using these variants of
metrics yields the best performance.5 The defect labels
were extracted from the Issue Tracking System (ITS)
of the projects. We use all five products within our
benchmark and refer to this data in the following as
AEEEM.6

4.2.4 NETGENE

The fourth data set was published by Herzig et
al. [71]7 and contains data about four open source
projects that follow strict and industry like develop-
ment processes. The data contains a total of 465 met-
rics, including static product metrics, network metrics,
as well as genealogy metrics, i.e., metrics related to
the history of a file, e.g., the number of authors or
the average time between changes. The defect labels
are determined following the approach suggest by
Zimmermann et al. [72]. We use all four products
within our benchmark and refer to this data in the
following as NETGENE.

3. The data is publicly available online: http://openscience.us/
repo/defect/mccabehalsted/ (last checked: 2017-05-19)

4. The data is publicly available online: http://bug.inf.usi.ch/
(last checked: 2017-05-19)

5. Internal experiments confirmed this hypothesis for this bench-
mark. The results achieved with the AEEEM data without LDHH
and WCHU, with only WCHU, and with only LDHH are part of
the raw result data provided with our replication kit [70].

6. With this name we take pattern from Nam et al. [22], using the
first letters of the products within the data set.

7. The data is publicly available online: https://hg.st.cs.
uni-saarland.de/projects/cg data sets/repository (last (last
checked: 2017-05-19)
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4.2.5 RELINK
The fifth data set was published by Wu et al. [73]8

and contains defect information about three products
from different projects. The data contains 60 static
product metrics and three different defect labels for
each module: 1) golden, with manually verified and
not automatically labeled defect labels; 2) relink, with
defect labels generated with their proposed approach;
and 3) traditional heuristic, with an SCM comment
based labeling. Within this benchmark, we use all
three products with the golden labeling and refer to
this data in the following as RELINK.

4.3 Classifiers and Baselines

Within our benchmark, we apply all 24 identified
approaches (see in tables 1–3) to all data sets. Six of
the approaches define a classification scheme, which
we directly adopt:

• genetic program (GP) for Liu10;
• logistic ensemble (LE) for Uchigaki12;
• MODEP for Canfora13;
• CODEP with Logistic Regression (CODEP-LR)

and CODEP with a Bayesian Network (CODEP-
BN) for Panichella14;

• the boosted SVM (VCBSVM) for Ryu14; and
• average voting (AVGVOTE), maximum voting

(MAXVOTE), bagging with a C4.5 Decision Tree
(BAG-DT), bagging with Naı̈ve Bayes (BAG-NB),
boosting with a C4.5 Decision Tree (BOOST-
DT), boosting with Naı̈ve Bayes (BOOST-NB) for
YZhang15.

For the 17 approaches Koshgoftaar08, Watanabe08,
Turhan09, Zimmermann09, CamargoCruz09, Ma12,
Peters12, Peters13, Herbold13, ZHe13, Nam13, PHe15,
Peters15, Kawata15, Amasaki15, Ryu15, and Nam15
we use six classifiers in our benchmark. Table 6 lists
the six classifiers, including a brief description and
the reason for the selection. We used these classifiers
together with all approaches, that did not propose a
classifier, but a treatment for the data or something
similar, i.e., the 17 listed above.

For Menzies11, we use the six classifiers from Ta-
ble 6 and additionally the WHICH algorithm, that was
used in the original publications [12], [13].

Additionally, we use four baselines in the bench-
mark listed in Table 7, including a brief description
and the reason for the selection.

We repeat all approaches that contain a random
component 10 times and use the mean value. These
approaches are Liu10 and Canfora13 because of the
genetic programs, Menzies11 due to the WHERE
clustering, Peters12 and Peters13 because of MORPH,
ZHe13 because of the undersampling, Ryu14 because
of the internal sampling, Peters15 because of the

8. The data is publicly available online: http://www.cse.ust.hk/
∼scc/ReLink.htm (last checked: 2017-05-19)

ordering of products for building the cache and
MORPH, and the baseline RANDOM.

Hence, we get a total of 450 results for each product
we use in the benchmark due to 15×6=90 (six classi-
fiers without repetitions including the baselines ALL
and CV) + 4×6×10=240 (six classifiers with repetition)
+ 7×10=70 (Menzies11) + 10 (proposed classifiers
without repetition and the baseline FIX) + 4×10=40
(proposed classifiers with repetition and the baseline
RANDOM).

Unfortunately, we could not apply all approaches
to all data sets, due to the required resource con-
sumption or run time. We only include work in the
benchmark that could be executed on a machine with
32 GigaByte (GB) Random Access Memory (RAM)
and where the calculation of a single result required
less than one day. The reason for this time restriction
is two-fold. First, we need to consider this bench-
mark itself. The execution time of our experiment
would not scale if we allowed longer runtimes. With
a runtime of one day per project, the calculation of
all results for the JURZECZKO data alone already
requires 62 days for each classifier. With six classifiers,
this increases two 372 days. Even if this is scaled
with ten parallel processes, this still requires over 23
days. For one week of runtime per result, this goes up
to over 162 days. The second reason is the practical
applicability of the approach. We cannot assume that
infinite time and memory is available for the task
of defect prediction. The problem with CPDP is that
the defect prediction model should be retrained every
time the data changes as this could mean changes to
the prediction model, i.e., the new model should be
trained every time the software product, for which
defects shall be predicted, changes. As a consequence,
if one wanted to integrated CPDP into a nightly build
cycle, even a runtime of one day would already be
infeasible.

The following results, could not be obtained.

• We could not apply the approach Nam13 to the
JURECZKO, FILTERJURECZKO, MDP, AEEEM,9

and NETGENE. The reason for this is that the
Transfer Component Analysis (TCA) required for
their approach requires solving an eigenvalue
problem over a non-symmetric non-sparse n×n-
matrix, with n the number of training instances.
Even storing this matrix does not work for the
MDP and NETGENE data with 32 GB RAM, for
the JURECZKO, FILTERJURECZKO, and AEEEM
the matrix fits within the memory, but solving the
eigenvalue problem cannot be done in less than
one day. Since the SELECTEDJURECZKO data is
only used for comparison with the JURECZKO

9. We realize that AEEEM was used in the original publication
by Nam et al. [22]. However, in comparison to our work, Nam et
al. only used 9 out of the 71 metrics we use in our work, which
allowed solving the eigenvalue problem in much less time.
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data, we also do not calculate the results for that
data set.

• We could not apply the approach ZHe13 to the
NETGENE data. The calculation of the separabil-
ity between the products requires more than one
day, due to the very high dimension of the data.

Hence, we have only 444 results for the products
from the JURECZKO, FILTERJURECZKO, and MDP
data sets, and 384 results for the products from the
NETGENE data.

Thus we have
• 62×444=27,528 results for the JURECZKO data,
• 41×444=18,204 for the FILTERJURECZKO data,
• 10×444=4,440 for the SELECTEDJURECZKO

data,
• 12×444=5,328 results for the MDP data,
• 5×444=2,220 results for the AEEEM data,
• 4×384=1,536 results for the NETGENE data, and
• 3×450=1,350 results for the RELINK data.

This gives us a total of 60,606 results10.

4.4 Evaluation Strategy

For the evaluation of RQ1, we took pattern from the
existing benchmarks on WPDP [60], [64], [65]. Our
results did not hold the assumptions for ANOVA.
The distribution of the performance metrics fulfilled
neither the normality of the residuals assumption,
nor homoscedasticity assumption. Thus, we could not
use the ANOVA/Scott-Knott approach suggested by
Ghotra et al. [65]. Therefore, we took pattern from
Lessmann et al. [60] and D’Ambros et al. [64].

Hence, we adopted the guidelines by Demšar [61]
for the statistical comparison of classifiers over mul-
tiple data sets. Demšar suggest the usage of a Fried-
man test [62] with a post-hoc Nemenyi test [63]. The
Friedman test is a non-parametric statistical test which
determines if there are statistically significant differ-
ences between three or more populations. In case the
Friedman test determines that there are statistically
significant differences between the populations, the
post-hoc Nemenyi test can be applied to compare the
different populations with each other. The Nemenyi
test uses the concept of Critical Distances (CDs) be-
tween average ranks to define significant different
populations. If the distance between two average
ranks is greater than the CD, the two populations are
significantly different. This concept can be visualized
using CD diagrams, as shown in Figure 2.

10. The replication kit additional contains a total of 67,326 results.
The additional results are the following. 2,250 results for AEEEM
without the LDHH and WCHU metrics, 2,250 for AEEEM with only
the LDHH metrics, and 2,220 for AEEEM with only WCHU metrics.
The difference in results between the AEEEM metric combinations
is due to the fact that Nam13 terminated in time for AEEEM
without the LDHH and WCHU metrics and for AEEEM with only
the LDHH metrics, but not for AEEEM with the WCHU metrics
and AEEEM with the LDHH and WCHU metrics.

Model 2

Model 1 Model 4

Model 3

Critical Distance

1 2 3 4 5

Fig. 2. Example for a critical distance after
Demšar [61]. Models connected by gray lines are not
significantly different.

In a normal CD diagram, the horizontal lines de-
fine all possible groups of non-significantly different
populations, i.e., all populations whose average ranks
are within the critical distance. As Figure 2 highlights,
these groupings may be overlapping. Model 2 is both
non-significantly different from Model 1 and Model
3. However, Model 1 and Model 3 are significantly
different. This means the post-hoc Nemenyi test has
one clear drawback: it does not create distinct ranks
for the populations that are compared, but overlap-
ping ranks. Under the assumption, that the distance
between the best average ranks and the worst average
ranks is greater than two time the CD, we can define
three non-overlapping groups of populations:

• The populations that are within the CD of the
best average ranking population (top rank 1).

• The populations that are within the CD of the
worst average ranking population (bottom rank
3).

• The populations that are neither (middle rank 2).

Using these three groups, we get non-overlapping sta-
tistically signficantly different ranks from the results
of the post-hoc Nemenyi test.

In the sense of Demšar’s work, a data set is the
counterpart to a software product in our benchmark.
Moreover, Demšar does not take multiple perfor-
mance metrics into account. Thus, in our case we
actually have multiple sets of populations, to each of
which we apply the Friedman test with the post-hoc
Nemenyi test, i.e., for each data set (e.g., JURECZKO)
and each metric (e.g., AUC). Thus, we get 20 rankings
of the CPDP approaches (four metrics used for RQ1
times five data sets).

The trivial approach would be to use the mean rank
over the 20 rankings to get an overall ranking. How-
ever, this approach does not work since the number
of approaches that are within a certain rank affects the
results. For example, it makes a difference, if you are
within the middle ranked cluster and there are only
two results in the best ranked cluster, or if there are
20 results in the best ranked cluster.

In order to deal with this effect, we introduce the
concept of the rankscore defined as one minus the
percentage of approaches that is ranked higher, i.e.,

rankscore = 1− #{approaches ranked higher}
#{approaches} − 1

.
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TABLE 6
Classifiers used in the benchmark.

Classifier (Abbrevi-
ation)

Short Description Reason for selection

C4.5 Decision Tree
(DT)

A tree structure where a logical decision based on a single metric
is made within each node [74]. The leafs of the tree define the
classification. Which attribute is used for the decision at the node
is decided by the information gain.

Interpretable classifier, popular in the
defect prediction literature.

Logistic Regression
(LR)

A linear regression model of the logit function to estimate the like-
lihood of a classification [75]. For classification, logistic regression
chooses the class with the highest likelihood.

Often successfully used for defect pre-
diction and allows not only binary
classification but also ranking of re-
sults.

Naı̈ve Bayes (NB) Estimates a score for each class based on a simplification of Bayes
law [76].

Popular in the defect prediction litera-
ture.

Random Forest (RF) A forest of random trees [77]. A random tree is a decision tree,
for which the attributes over which the decisions are made are
selected randomly. Hence, the complete structure of the tree is
random.

One of the most powerful classification
algorithms according to the machine
learning literature [78], [6].

RBF Network (NET) A type of artificial neural network with Radial Basis Functions
(RBFs) as neurons [78], [79].

One of the most powerful classification
algorithms according to the machine
learning literature [78].

Support Vector Ma-
chine (SVM)

An optimization problem solver that determines a hyperplane that
separates the positive from the negative samples. The hyperplane
is determined in the kernel space of the data, i.e., a transformation
of the data in a higher dimensional space using a kernel function.
As kernel function, we use RBFs.

One of the most powerful classification
algorithms according to the machine
learning literature [78], [80].

TABLE 7
Baselines used in the benchmark.

Baseline Short Description Reason for selection
ALL All products from the same data set except from the

same product are used for training without any data
treatment. We train a classifier with all data for all
classifiers listed in Table 6.

The simplest possible approach towards CPDP: just take
all data from a repository and let the classifier handle
the rest.

CV 10x10 cross-validation for each product to build an
WPDP baseline. We perform cross-validation with all
classifiers listed in Table 6.

A comparison with WPDP. However, we note that cross-
validation overestimates the performance, as determined
by Tan et al. [81] who observed double-digit differences
between cross-validation and real WPDP with only his-
toric data and no data from the same revision.

RANDOM Randomly classifies instances as defective with a proba-
bility of 0.5.

A trivial classification model which all approaches must
beat. Random classification is also often used in machine
learning research as a minimal criterion that approaches
must outperform.

FIX Classifies all entities as defective Considering all entities as potentially defective is the null
hypothesis that testers should work with, if no defect
prediction model is available. Hence, all defect predic-
tion models should be compared against this approach
to ensure that they actually provide a practical gain.

The rankscore is within the interval [0, 1], where one
is a perfect ranking, if no approach is in a better
cluster, and zero the worst ranking that is achieved
if all other approaches are ranked better. Hence, the
rankscore is not sensitive to the number of clusters and
it creates a relative ranking of approaches for each
metric. To create the overall ranking, we use the mean
rankscore over all performance metrics and data sets.
Hence, we rank approaches best if they perform well
for all performance metrics on all data sets, failures
to predict accurately measured using one of the four
metrics on any of the five data sets will lead to lower
rankings.

For RQ2, we consider the number of products
that fulfill the success criterion of 0.75 recall, 0.75
precision, and 0.75 accuracy. For RQ3, we compare the

results of the JURECZKO data to the results of the
FILTERJURECZKO data. To this aim, we determine
the difference in the mean performance between the
two data sets for all results and consider the mean
difference and the standard deviation. Moreover, we
perform a Mann-Whitney-U test [82] to determine if
the difference is statistically significantly different. For
RQ4, we compare the results of the JURECZKO data
to the SELECTEDJURECZKO data following the same
approach as for RQ3.

For both Friedman test with post-hoc Nemenyi test
and the Mann-Whitney-U test we use a significance
threshold of p < 0.05.

4.5 Additional Remarks
Since the focus of our benchmark is on replication
of proposed approaches and not the advancement or
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improvement of existing approaches, we tried to im-
plement and execute the benchmark with parameters
as close as possible to the original setups. Specifically,
this means three things:

• We did not perform any treatment for the class
imbalance problem, unless it was also done in the
original work. For example, ZHe13 proposed to
use undersampling, so we also used undersam-
pling for that approach in our benchmark.

• We did not perform any skew treatment for vari-
able distributions, unless it was also done in the
original work. For example, Turhan09 proposed
logarithm transformations in their work, so the
metric data was also transformed in our replica-
tion of Turhan09.

• We did not perform any threshold optimization
for threshold-sensitive classifiers. The reason for
this is that none of related work performed such
an optimization.11

We are aware that this decision to not perform these
tasks in general may mean that classifiers underper-
form, as they are sensitive to such effects. For exam-
ple, SVMs are very sensitive to the class imbalance
problem, because they are often not well-calibrated.
However, we deem the threat to the validity of this
benchmark if we were to modify the approaches by,
e.g., performing additional variable transformation to
treat skew or additional data selection to treat the
class imbalance is greater. In that case, it would not
be clear if a good or bad performance is due to our
modification, or due to the original approach.

The threshold optimization would only affect the
results achieved with the LR model for classification,
the other classifiers are not threshold-sensitive. Since
the selection of the threshold must be done on the
training data and none of the CPDP approaches pro-
poses such a training data based threshold selection
approach, we did not apply it either. A posteriory
selection of the best possible threshold on the target
data is not possible in practice, and was therefore not
considered as an alternative.

5 RESULTS

Within this section, we present the results of our
benchmark for each research question. We are aware
that due to the scope of our benchmark and the data
we collected, different research questions can also be
addressed with the same data, e.g., the performance
not over all metrics and data sets, but also for only a
single metric, each data set on its own, etc. To facilitate
such further insights, we provide a replication kit [70].
The replication kit contains

11. The only exception to this is to some degree Canfora13.
However, they pick the optimal threshold for a given predefined
performance target. We do not have such a performance target in
our general benchmark.
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Fig. 3. Mean rank score over all data sets for the
metrics AUC, F-measure, G-measure, and MCC. In
case multiple classifiers were used (e.g., those listed in
Table 6), we list only the result achieved with the best
classifier.

• all source code used for the collection and eval-
uation of the results;

• a MySQL database dump with all raw results
including additional metrics and the confusion
matrix; and

• additional visualizations of the results, including
box plots and CD diagrams for the single perfor-
mance metrics and data sets.

5.1 RQ1: Which CPDP approaches perform best
in terms of F-measure, G-measure, AUC, and MCC?

Figure 3 shows the mean rankscore for the four metrics
and five data sets for all approaches. Table 8 shows
detailed results including the mean values and rank-
ings for each performance metric and each data set.
Due to the number of results, we only list the best
classifier for each approach. For example, we only list
NB in case it outperformed DT, SVM, LR, etc.

The first thing we note for our result is that there
are often many approaches ranked first, meaning that
there are no statistically significant differences we
could determine between many approaches. This is
highlighted in Table 8 through bold-facing all top-
ranking approaches for a single data set and perfor-
mance metric according to the Friedmann test with
post-hoc Nemenyi test. Still, there are some differ-
ences between the results.

CamargoCruz09-DT has the best mean rankscore
with 1.00 (best possible score), followed by Turhan09-
DT with 0.977, Menzies11-RF with 0.975, and
Watanabe08-DT with 0.968. The difference between
CamargoCruz09 and the three followers is very small.
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TABLE 8
Mean results over all products with rankscores in brackets. Bold-faced values are top-ranking for the metric on
the data set. For FILTERJURECZKO and SELECTEDJURECKO, we show the difference in the mean values to

JURECZKO.
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Each of the three followers in only once not top-
ranked, the differences are only due to the fact that a
different amount of approaches is part of the top ranks
in these cases, leading to variations in the rankscore.
Overall, ten approaches have a mean rankscore of
at least 0.9, i.e., are on average in the best 10% of
results: the four listed above, as well as Kawata15-
RF with 0.948, PHe15-RF with 0.938, Peters15-DT with
0.931, YZhang15-BAT-DT and ALL-RF with 0.927, and
Ma12-DT with 0.914. Of the top ten, Kawata15-RF and
PHe15-RF are also close to the top and only twice
ranked worse than CamargoCruz09-DT, the others
three times.

The WPDP with cross validation CV-NET is not
the best overall approach, but only ranked in the
lower mid-field with a mean rank score of 0.805. This
indicates that CPDP can outperform WPDP in this
setting, where multiple performance measures and
data sets are considered.

The baseline ALL-RF is part of the results which
are on average in the best 10% of results. This outper-
forms 16 of the proposed approaches for all classifiers:
Ma12, Panichella14, Amasaki15, Herbold13, Koshgof-
taar08, Zimmermann09, Peters13, Nam15, Peters12,
ZHe13, Ryu15, Liu10, Nam13, Ryu14, Uchigaki12, and
Canfora13. The baselines RANDOM and FIX are at
the bottom of the ranking. We note that we made
an assumption for the last ranked result, Canfora13-
MODEP, i.e., the selection of a classifier with at
least 70% recall. Another choice here might drastically
change the performance of this approach, since it
actually yields a family of classifiers.

Answer RQ1: CamargoCruz09-DT performs best
among the compared CPDP approaches and even
outperforms cross-validation. However, the dif-
ferences to other approaches are very small, in-
cluding the difference to the baseline ALL-RF. The
baseline ALL-RF is ranked higher than sixteen of
the CPDP approaches.

5.2 RQ2: Does any CPDP approach consistently
fulfill the performance criteria for successful pre-
dictions postulated by Zimmermann et al. [9], i.e.,
have at least 0.75 recall, 0.75 precision, and 0.75
accuracy?

Table 9 shows the products and CPCD approaches
where any classifier fulfills the criterion by Zimmer-
mann et al. [9]. Overall, for only 10 out of 86 products
any CPDP approach fulfills the criterion. The baseline
CV fulfills the criterion for 13 out of 86 products
with any classifier. The CV-RF is the best classifier
for CV with 11 out of 86 products, i.e., for 12.79%
of the products. Of the CPDP approaches, Turhan09
and Nam15 perform best with 4 products, i.e., 4.65%.

TABLE 9
Approaches and products were any classifier fulfilled
the criterion by Zimmermann et al. [9]. Italic means

only fulfilled by a baseline.

Product Data Set Fulfilling approaches
berek JURECZKO ALL, Amasaki15,

CamargoCruz09, CV,
Herbold13, Kawata15,
Koshgoftaar08, Ma12,
Menzies11, Panichella14,
Peters12, Peters13, Peters15,
PHe15, Turhan09, YZhang15,
Zimmermann09

ckjm JURECZKO Herbold13, Liu10, Zimmer-
mann09

log4j-1.2 JURECZKO CV, FIX
openintents RELINK Amasaki15, YZhang15
pbeans1 JURECZKO CV, Herbold13, FIX, ZHe13
pdftranslator JURECZKO CV, Liu10, Nam15
poi-1.5 JURECZKO CV
poi-2.5 JURECZKO CV
poi-3.0 JURECZKO Canfora13, CV, Liu10, Nam15
sklebagd JURECZKO CamargoCruz09, CV,

Herbold13, Liu10, Nam15,
Peters12, Peters15, PHe15,
Ryu15, Turhan09, ZHe13

termoproject JURECZKO Ryu14
velocity-1.4 JURECZKO CV, FIX
velocity-1.5 JURECZKO CV
wspomaganiepi JURECZKO Canfora13, CV, Herbold13,

Liu10, Ma12, Menzies11,
Nam15, Peters12, Ryu15,
Turhan09, ZHe13,
Zimmermann09

xalan-2.7 JURECZKO CV, FIX
xerces-1.4 JURECZKO CV
zuzel JURECZKO Amasaki15, Nam15, Peters15,

PHe15, Turhan09, Zimmer-
mann09

This performance is the same as the trivial FIX base-
line, which also fulfills the criterion for 4 products.
Turhan09 and Nam15 both fulfull the criterion for the
products sklebagd, wpsomaganiepi, and zuzel from
the JURECZKO data, i.e., three of the four products
are overlapping. Interestingly, FIX predicts well on
four other products. Hence, none of the research
could advance the state-of-the-art to such a degree,
that metric based predictions can fulfill this criterion.
Actually, the trivial baseline FIX could not even be
outperformed. Even with the CV as baseline, i.e., with
WPDP it is not possible to meet this performance
criterion consistently. In total, only 317 of the 37,824
results we collected for our benchmark for the data
sets JUREZCKO, MDP, AEEEM, NETGENE, and RE-
LINK fulfill the criterion, i.e., for 0.83% of results. If
we exclude the baselines FIX, CV, and RANDOM, this
number drops to 268, i.e., to 0.73%. In order to see
if relaxing the criterion helps, we also evaluated the
results for the relaxed criterion of 0.7 recall and 0.5
precision as proposed by He et al. [43]. Now, CV-DT
fulfills the criterion for 19 products, i.e., 22.09% of the
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TABLE 10
Products where any CPDP approach fulfills the

criterion by Zimmermann et al. [9] and the precision of
the trivial prediction FIX.

Product Data Set #Inst. #Appr. precision
FIX

berek JURECZKO 43 36.7 0.37
ckjm JURECZKO 10 3.4 0.50

openintents RELINK 56 2 0.39
pbeans1 JURECZKO 26 5 0.77

pdftranslator JURECZKO 33 4.4 0.45
poi-3.0 JURECZKO 442 5.4 0.64

sklebagd JURECZKO 20 16 0.60
termoproject JURECZKO 42 1 0.31

wspomaganiepi JURECZKO 18 23.3 0.67
zuzel JURECZKO 29 7 0.45

TABLE 11
Products where no CPDP approach fulfills the

criterion by Zimmermann et al. [9] but the trivial
baseline FIX does.

Product Data Set #Inst. precision
FIX

log4j-1.2 JURECZKO 205 0.92
velocity-1.4 JURECZKO 196 0.75

xalan-2.7 JURECZKO 909 0.99

products, followed by Liu10-GP with 18.8 products12

of the 86 products, i.e., for 21.86% and FIX with 18
products, i.e., 20.93%. Hence, the success rate goes up
to about one in five, but is still on the level of trivial
predictions. The total number of results, including the
baselines that fulfill the relaxed criterion is 1,755, i.e.,
for 4.62% of the results. If we exclude the baselines
this number drops to 1,639, i.e., for 4.49% of the
results.

Due to the strong performance of the trivial pre-
dictions, we also changed our focus from approaches
to products and investigated for which products the
criterion by Zimmermann et al. was fulfilled. Table 10
list the 10 products from all data sets for which
the criterion was fulfilled at least once by an CPDP
approach, i.e., not including the baselines FIX, CV,
and RANDOM. The table also shows the precision
achieved with the trivial baseline FIX. Please note that
for FIX precision equals the accuracy and the recall is
always one. Hence, for the baseline FIX the criterion is
fulfilled if precision >= 0.75. The 10 products include
nine out of 21 products with less than 100 instances.
Thus, the approaches from the CPDP literature only
fulfill the criterion for one product (poi-3.0) out of 65
products from all data sets that are not very small.
Table 11 lists three products within the data, where
the FIX baseline fulfills the criterion, but none of the
CPDP approaches does. Thus, three products within
the data can be predicted sufficiently accurate with a

12. The fraction is possible due to the 10 repetitions. For one
product the prediction fulfilled the criterion in 8 out of 10 replica-
tions.

TABLE 12
Difference between the results achieved with the
JURECZKO and SELECTEDJURECZKO data.

Bold-faced values are significantly higher.

JURECZKO SELECTEDJURECZKO p-value
AUC 0.64 0.65 0.297

F-Measure 0.32 0.36 0.001
G-Measure 0.38 0.43 0.003

MCC 0.18 0.21 < 0.001

trivial approach, but by none of the CPDP approaches.

Answer RQ2: No approach allows for predictions
that fulfill this criterion consistently, not even
WPDP with CV. Only for small products the
criterion is fulfilled, but also irregularly. Even the
relaxed criterion of 0.7 recall and 0.5 precision is not
fulfilled consistently. Moreover, even if trivial pre-
diction can fulfill the criterion by Zimmermann et
al., the CPDP approaches do not.

5.3 RQ3: What is the impact of using only larger
products on the benchmark results?
Table 8 shows the difference between the JURECZKO
data and the FILTERJURECZKO data. The compari-
son between the JURECZKO and FILTERJUREZCKO
data using the Mann-Whitney-U shows no significant
differences between the two data sets in the metrics
AUC, F-measure, G-measure, MCC, and AUCEC. The
largest difference between the two sets is for the G-
measure with a mean difference of µ = 0.02 and a
standard deviation of σ = 0.02.

Answer RQ3: There is almost no difference be-
tween using all of the JURECZKO data and using
the FILTERJURECZKO data that does not contain
small products.

5.4 RQ4: What is the impact of using a relatively
small subset of a larger data set on the benchmark
results?
Table 8 shows the difference between the JURECZKO
data and the SELECTEDJURECZKO data and Ta-
ble 12 the overall mean values for all approaches and
the p-value of the Mann-Whitney-U tests performed.
The comparison revealed statistically significant dif-
ference for all metrics except AUC. For F-measure, G-
measure, and MCC the mean performance is signif-
icantly higher with the SELECTEDJURECZKO data.
The deviation between the JURECZKO and SELECT-
EDJURECZKO data has the highest value for the G-
measure with about 0.05 higher mean value, i.e., a
performance overestimation by five percent.
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Answer RQ4: There are statistically significant
differences between the JUREZCKO data and the
SELECTEDJURECZKO data. Our findings indi-
cate that performance may increase by up to 5%.

6 DISCUSSION

Within this section, we discuss our results, lessons
that we learned from the benchmark, and threats to
validity.

6.1 Insights from the Benchmark
The results of the benchmark were quite surprising
for us. First of all, we did not expect that with Camar-
goCruz09 one of the first approaches to be proposed
would be at the top of our ranking. Additionally,
with Turhan09 another seven year old approach and
with Watanabe08 even an eight year old approach are
also part of the top ranked approaches. Hence, three
approaches that are at least seven years old are within
the four top ranked results. What is even more sur-
prising is that Turhan09 was actually replicated quite
a few times already and researchers frequently con-
cluded that their approaches outperform the proposed
k-Nearest Neighbor (NN) relevancy filter. However,
our results show that if different performance metrics
and data sets are considered this is not statistically
significantly the case, and the opposite is true. Re-
garding the similarly high ranking of CamargoCruz09
and Watanabe08, we note that both approaches use
standardization. Hence, simple standardization of the
data already works very well.

Another finding is that different classifiers perform
best for different approaches. DT (9 times) and RF
(8 times) and are most often among the best results,
however, all others except the SVM are also present.
Furthermore, we note that for many approaches the
differences between the classifiers were rather small.
Details on the classifier performance can be found
in the additional results published along with this
benchmark (see Section 5). We also note that the
SVM often yields trivial classifiers. This is due to the
fact that most approaches do not perform imbalance
treatment and SVMs are very sensitive to imbalance.
However, for ZHe13 (which treats the bias with un-
dersampling) and for Herbold13 (which treats the
bias with equal weighting) the SVM also performs
quite well but not best. This indication is in line with
the suggestion by Hall et al. [83], who determined
in their literature review on defect prediction, that
treating a bias in the data is often neglected, but
has a potentially big impact on the results. However,
further investigations in this direction are required to
draw firm conclusions for CPDP. We also note that the
evaluation of differences between classifiers is not the
focus of this benchmark and requires further research

to see, e.g., how the findings of classifier comparison
studies (e.g., [60], [65]) apply to our results.

The approach Nam2015, which is actually unsuper-
vised defect prediction and, therefore, could render
the need for CPDP ranks in the mid-field overall, with
a rankscore of 0.834. This means that many CPDP ap-
proaches outperform this unsupervised approached.
However, Nam2015 is among the best when it comes
to fullfilling Zimmermann et al.’s performance crite-
rion [9] and the rankscore of 0.834 is also not dev-
astating. This means that in principle, unsupervised
approaches can be a challenger for CPDP and should
also be considered in future benchmarks for CPDP
approaches. Moreover, it should be analyzed under
which circumstances the unsupervised approaches
work well. Our results indicate that they may be well
suited for small projects, as indicated by the fullfill-
ment of Zimmermann et al.’s performance criterion
on four small products shows. However, a detailed
study to generate further insights into this problem is
required.

Our findings regarding RQ2 revealed three things.
The first is the obvious: the approaches fail to achieve
the postulated prediction goal. Menzies et al. [84]
already discussed possible ceiling effects of defect pre-
diction models if only static code attributes are used.
The AEEEM and NETGENE data also include other
metric types. Both data sets contain process metrics,
the NETGENE data also network metrics. Both types
of information do not help to improve the models to
such a degree that they fulfill the criterion. Hence,
further investigations into a potential ceiling effect,
also for other metric types, are warranted. The second
is more important for future studies: small products
do not allow for good conclusions. Apparently, getting
a CPDP approach to work on a small product is
much simpler than for larger products. To our mind,
there are two possible explanations for this: either the
fewer instances in the small products lead to a bigger
random chance of fulfilling the performance goals or
smaller products are easier to predict. We believe it
is a mixture of both and, thereby, urge researchers
to be cautious when drawing conclusions based on
predictions on very small data products. The third
is that one should always check if trivial approaches
already yield sufficient performance. The check if
the trivial prediction of everything being defective
fulfills the criterion revealed that trivial predictions
are actually possible for some products, where the
CPDP approaches failed.

Moreover, our benchmark revealed the need for
using multiple data sources and performance met-
rics. If we would have used only one performance
metric and one data set, our results may have looked
quite different. For example, if we only would have
used the metric AUC and the JURECZKO data, the
approach Uchigaki12-LE would be among the best
results. However, this approach performs poorly in
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terms of all other performance metrics and is, there-
fore, ranked very low in our benchmark. Additionally,
our evaluation regarding RQ3 and RQ4 revealed that
subsetting of data is possible without changing the re-
sults drastically (RQ3), but small subsets may change
the results (RQ4).

6.2 Lessons Learned

We learned three lessons from our benchmark, which
we, as a (cross-project) defect prediction community,
should try to respect to ensure progress towards
solving the open problems in the state-of-the-art.

Replicate! Always replicate the results of previ-
ous studies. Do not just compare yourself against
baselines like cross validation, but directly against
approaches proposed by other researchers. And do
not just compare yourself against one or two large
publications, but all competitors. Our results show
that it is not sufficient to just discuss related work, but
that actual comparisons are required to demonstrate
if and how the state-of-the-art is advanced. Otherwise
it is easy to overlook promising approaches and hard
to claim that your own work actually advances the
state-of-the-art. As motivation for this, consider that to
the best of our knowledge, the approach by Camargo
Cruz et al. [10] was never replicated before. In case
a comparison against all competitors is not possible
for some reason, we suggest to compare yourself at
least to Camargo Cruz et al. (2009) [10], Turhan et
al. (2009) [8], Menzies et al. (2011, 2013) [12], [13], and
Watanabe et al. (2008) [7], as each of them is for over
95% of performance metrics and data sets among the
statistically significant best results. If the same data
sets as in our benchmark are used, you may directly
compare yourself to the results we achieved.

Share! While sharing data is quite common within
our community, sharing implementations is not. For
almost none of the replicated approaches, we could
find a publicly available implementation online. This
meant that we had to put a lot of effort into im-
plementing approaches, which were already imple-
mented. Sharing implementations can help the com-
munity a lot with replicating results. Recently, cloud
platforms that enable sharing of implementations,
data, and results at the same time were proposed as a
solution [85]. Another approach could be the sharing
of R packages [86].

Diversify! Our study shows that different metrics
yield different results, hence, depending on the point
of view, different approaches might perform best.
Hence, we suggest that during the evaluation of ap-
proaches multiple perspectives should be considered,
e.g., through multiple performance metrics covering
different aspects, different data sets that cover dif-
ferent aspects of reality, or different potential appli-
cations. Such evaluations give a more holistic view
on the capabilities of suggested approaches and tech-

niques, from which we as a community will benefit
in the long term.

6.3 Threats to Validity

Our benchmark has several threats to its validity.
We distinguish between internal validity, construct
validity, and external validity.

6.3.1 Internal Validity
Since our focus was on replicating existing work as is
without changes or tuning of parameters, we do not
see any internal threats to the validity of our results.

6.3.2 Construct Validity
The construction of our benchmark may influence the
results and the findings. The performance metrics that
were used might be unsuitable. A different set of
metrics may lead to different results. Additionally, the
ranking based on the Friedmann test with post-hoc
Nemenyi test has a strong impact on the overall evalu-
ation. A different statistical test may lead to a different
ranking. Furthermore, the way we combined differ-
ent rankings using the rankscore influences the over-
all ranking of our benchmark. A different approach
may lead to another ranking. The data itself may
also be noisy and contain mislabelled instances [40],
[68] which would influence the results. Finally, even
though we tested our implementation and re-used
existing libraries where possible, we cannot exclude
that our implementations contains bugs or that we
misunderstood implementation details from the pub-
lications that we replicated. However, we tested all
approaches on small data sets and checked the con-
sistency of the results. Moreover, we double-checked
for all approaches that the implementations match
the descriptions in the publications. Additionally, we
compared the results of our benchmark to the results
of the original publications, in case the similar data
was used as a sanity check. This check also revealed
no inconsistencies.

6.3.3 External Validity
Our main concern regarding the external validity of
the results is that the data that we used might not be
representative for software in general. Although we
used quite a large corpus of data within this study,
with products from five different data sets, it were
still only 85 products. Hence, we cannot rule out
that the effect is random and depends purely on the
analyzed data and the benchmark results may change
drastically in the case that other data is used.

Additionally, our data did not contain any social
metrics or context factors. Approaches that utilize
such information should be considered for future
benchmarks and may outperform the approaches pre-
sented in this benchmark.
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7 CONCLUSION

Within this article, we presented the results of the
replication of 24 approaches for CPDP and their
ranking based on the performance on five data sets
measured with four performance metrics. A stan-
dardization approach based on the median value of
the target and training data in combination with
taking the logarithm of metric values proposed by
Camargo Cruz and Ochimizu [10] was determined to
perform best, as it always was in the group of results
with the statistically significant best performance. The
approach is followed by other approaches proposed
by Turhan et al. [8], Menzies et al. [12], [13], and
Watanabe et al. [7]. However, none of the replicated
approaches yields a consistently high performance
according to the performance criterion by Zimmer-
mann et al. [9], i.e., a performance of 0.75 recall,
precision, and accuracy. Additionally, we determined
that the performance does not significantly change if
a (still large) subset of products is used, where each
product has at least 100 classes, in comparison to us-
ing all products. The impact on the mean performance
was almost non-existent. On the other hand, using
a rather small subset of products can improve the
mean results statistically significantly and by several
percent. Therefore, selection of subsets from a large
data set should always be done carefully and based
on good reasons.

In the future, we will extend our benchmark with
new approaches proposed by other researchers. More-
over, we hope that other researchers benefit from our
replication of techniques and would be happy if our
implementations can help with their future research
on CPDP. Moreover, we plan to scale up our bench-
mark using new and larger data, such that the ranking
is not based only on 85 software products, but on a
large body of products with hundreds, or thousands
of products that can be seen as representative for a
large part of software. Finally, we will use our insights
into techniques and their implementations to advance
the state-of-the-art of CPDP with new techniques with
the hope to achieve the performance goal postulated
by Zimmermann et al. [9] consistently and be able
to provide a good defect prediction tool for software
engineers. As part of these efforts, we will also bench-
mark modifications of the proposed state of the art.
Concretely, we will re-visit all approaches and extend
them with a treatment to address the class imbalance
problem following the advice by Hall et al. [83]. Addi-
tionally, a recent study by Tantithamthavorn et al. [87]
determined that automated hyperparameter tuning
can improve cross-project defect prediction models.
We will adopt their approach for all classification
models, and if possible also hyperparameters of the
CPDP approaches themselves, e.g., the neighborhood
size of the relevancy filter proposed by Turhan et
al. [8].

We will also revisit the results of our benchmark
to provide further insights. Currently, our benchmark
provides lots of raw result data, together with a sta-
tistical analysis which approaches perform best, but
rather few visualizations that allow deeper insights
into the benchmark results. As part of our future
work, we will extend this with further visual eval-
uation tools, e.g., to allow insights not only on the
overall results on a data set, but also specifically for
each product in a data set.
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APPENDIX A
TABLE OF ACRONYMS

ANOVA ANalysis Of VAriance
AST Abstract Syntax Tree
AUC Area Under the ROC Curve
Ca Afferent Coupling
CBO Coupling Between Objects
CCA Canonical Correlation Analysis
CD Critical Distance
Ce Efferent Coupling
CFS Correlation-based Feature Subset
CLA Clustering and LAbeling
CODEP COmbined DEfect Predictor
CPDP Cross-Project Defect Prediction
DBSCAN Density-Based Spatial Clustering
DCV Dataset Characteristic Vector
DTB Double Transfer Boosting
fn false negative
fp false positive
GB GigaByte
HL Hosmer-Lemeshow
ITS Issue Tracking System
JIT Just In Time
LCOM Lack of COhession between Methods
LOC Lines Of Code
MDP Metrics Data Program
MI Metric and Instances selection
MODEP MultiObjective DEfect Predictor
MPDP Mixed-Project Defect Prediction
NN Nearest Neighbor
PCA Principle Component Analysis
RAM Random Access Memory
RFC Response For a Class
SCM SourceCode Management system
SVM Support Vector Machine
TCA Transfer Component Analysis
tn true negative
tp true positive
RBF Radial Basis Function
ROC Receiver Operating Characteristic
UMR Unified Metric Representation
VCB Value-Cognitive Boosting
WPDP Within-Project Defect Prediction

APPENDIX B
DATA SET DETAILS

B.1 JURECZKO / FILTERJURECZKO / SELECTED-
JURECZKO Data

The following metrics are part of the
JURECZKO/FILTERJURECZKO data:

• WMC: weighted method count, number of meth-
ods in a class

• DIT: depth of inheritance tree
• NOC: number of children
• CBO: coupling between objects, number of

classes coupled to a class

• RFC: response for class, number of different
methods that can be executed if the class receives
a message

• LCOM: lack of cohesion in methods, number of
methods not related through the sharing of some
of the class fields

• LCOM3: lack of cohesion in methods after [88]
• NPM: number of public methods
• DAM: data access metric, ratio of private (pro-

tected) attributes to total number of attributes in
the class

• MOA: measure of aggregation, number of class
fields whose types are user defined classes

• MFA: measure of functional abstraction, ratio of
the number of methods inherited by a class to
the total number of methods accessible by the
member methods of the class

• CAM: cohesion among methods of class, related-
ness of methods based upon the parameter list of
the methods

• IC: inheritance coupling, number of parent
classes to which the class is coupled

• CBM: coupling between methods, number of
new/redefined methods to which all the inher-
ited methods are coupled

• AMC: average method complexity
• Ca: afferent couplings
• Ce: efferent couplings
• CC: cyclomatic complexity
• Max(CC): maximum cyclomatic complexity

among methods
• Avg(CC): average cyclomatic complexity among

methods

For a detailed explanation see [40].

B.2 MDP Data

The following metrics are part of the MDP data. This
is the common subset of metrics that is obtained by
all projects within the MDP data set:

• LOC TOTAL: total lines of code
• LOC EXECUTABLE: exectuable lines of code
• LOC COMMENTS: lines of comments
• LOC CODE AND COMMENT: lines with com-

ments or code
• NUM UNIQUE OPERATORS: number of

unique operators
• NUM UNIQUE OPERANDS: number of unique

operands
• NUM OPERATORS: total number of operators
• NUM OPERANDS: total number of operands
• HALSTEAD VOLUME: Halstead volume (see

[89])
• HALSTEAD LENGTH: Halstead length (see [89])
• HALSTEAD DIFFICULTY: Halstead difficulty

(see [89])
• HALSTEAD EFFORT: Halstead effort (see [89])
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TABLE 13
Software products from the JURECZKO /

FILTERJURECZKO data, including their total number
of classes and the number of defect-prone classes.
Products that are not part of FILTERJURECZKO are

italic. Products that are part of the
SELECTEDJURECZKO data are boldface.

Product #Classes #Defect-prone % Defect-prone
ant 1.3 125 20 16%
ant 1.4 178 40 22%
ant 1.5 293 32 11%
ant 1.6 351 92 26%
ant 1.7 745 166 22%
arc 234 27 12%
berek 43 16 37%
camel 1.0 339 11 4%
camel 1.2 608 216 36%
camel 1.4 872 145 17%
camel 1.6 965 188 19%
ckjm 10 5 50%
e-learning 64 5 8%
forrest 0.7 29 5 17%
ivy 1.1 111 63 57%
ivy 1.4 241 16 7%
ivy 2.0 352 40 11%
jedit 3.2 272 90 33%
jedit 4.0 306 75 25%
jedit 4.1 312 79 25%
jedit 4.2 367 48 13%
jedit 4.3 492 11 2%
kalkulator 27 6 22%
log4j 1.0 135 34 25%
log4j 1.1 109 37 34%
log4j 1.2 205 189 92%
lucene 2.0 195 91 47%
lucene 2.2 247 144 58%
lucene 2.4 340 203 60%
nieruchomosci 27 10 37%
pbeans 1 26 20 77%
pbeans 2 51 10 20%
pdftranslator 33 15 45%
poi 1.5 237 141 59%
poi 2.0 314 37 12%
poi 2.5 385 248 64%
poi 3.0 442 281 64%
redaktor 176 27 15%
serapion 45 9 20%
skarbonka 45 9 20%
sklebagd 20 12 60%
synapse 1.0 157 16 10%
synapse 1.1 222 60 27%
synapse 1.2 256 86 34%
systemdata 65 9 14%
szybkafucha 25 14 56%
termoproject 42 13 31%
tomcat 858 77 9%
velocity 1.4 196 147 75%
velocity 1.5 214 142 66%
velocity 1.6 220 78 35%
workflow 39 20 51%
wspomaganiepi 18 12 67%
xalan 2.4 723 110 15%
xalan 2.5 803 387 48%
xalan 2.6 885 411 46%
xalan 2.7 909 898 99%
xerces initial 162 77 48%
xerces 1.2 440 71 16%
xerces 1.3 453 69 15%
xerces 1.4 588 437 74%
zuzel 29 13 45%
Total 17681 6062 34%

TABLE 14
Software products from the MDP data that are part of
the study, including their total number of modules and

the number of defect-prone modules.

Product #Modules #Defect-prone % Defect-prone
CM1 344 42 12%
JM1 9593 1759 18%
KC1 2096 325 16%
KC3 200 36 18%
MC1 9277 68 1%
MC2 127 44 35%
MW1 264 27 10%
PC1 759 61 8%
PC2 1585 16 1%
PC3 1125 140 12%
PC4 1399 178 13%
PC5 17001 503 3%
Total 43770 3199 7%

• HALSTEAD ERROR EST: Halstead Error, also
known as Halstead Bug ( (see [89]))

• HALSTEAD PROG TIME: Halstead Pro
• BRANCH COUNT: Number of branches
• CYCLOMATIC COMPLEXITY: Cyclomatic com-

plexity (same as CC in the JSTAT data)
• DESIGN COMPLEXITY: design complexity

B.3 AEEEM Data
The following metrics are part of the AEEEM data:

• CBO: coupling between objects
• DIT: depth of inheritance tree
• fanIn: number of other classes that reference the class
• fanOut: number of other classes referenced by the class
• LCOM: lack of cohesion in methods
• NOC: number of children
• RFC: response for class
• WMC: weighted method count
• NOA: number of attributes
• NOAI: number of attributes inherited
• LOC: lines of code
• NOM: number of methods
• NOMI: number of methods inherited
• NOPRA: number of private attributes
• NOPRM: number of private methods
• NOPA: number of public attributes
• NOPM: number of public methods
• NR: number of revisions
• NREF: number of times the file has been refac-

tored
• NAUTH: number of authors
• LADD: sum of lines added
• max(LADD): maximum lines added
• avg(LADD): average lines added
• LDEL: sum of lines removed
• max(LDEL): maximum lines deleted
• avg(LDEL): average lines deleted
• CHURN: sum of code churn
• max(CHURN): maximum code churn
• avg(CHURN): average code churn
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TABLE 15
Software products from the AEEEM data that are part

of the study, including their total number of classes
and the number of defect-prone classes.

Product #Classes #Defect-prone % Defect-prone
lucene 691 64 9%
pde 1497 209 14%
mylyn 1862 245 13%
eclipse 997 206 21%
equinox 324 129 40%
Total 5371 893 16%

TABLE 16
Software products from the NETGENE data that are

part of the study, including their total number of
classes and the number of defect-prone classes.

Product #Classes #Defect-prone % Defect-prone
httpclient 361 205 57%
jackrabbit 542 225 42%
lucene 1671 346 11%
rhino 253 109 43%
Total 2827 885 31%

• AGE: age of the file
• WAGE: weighted age of the file

The italic metrics are included in three different vari-
ants: with their actual metric values, as well as with
the weighted churn (WCHU) and linear decayed en-
tropy (LDHH). For a detailed explanation see [69].

B.4 NETGENE Data

Due to the large number of metrics, we ask the reader
to consider the original publication for the list of the
465 metrics [71].

B.5 RELINK Data

The following metrics are part of the RELINK data:
• AvgCyclomatic: average cyclomatic complexity

for all nested functions or methods
• AvgCyclomaticModified: average modified cyl-

comatic complexity for all nested functions and
methods

• AvgCyclomaticStrict: average strict cyclomatic
complexity for all nested functions or methods

• AvgEssential: average essential complexity for all
nested functions or methods

• AvgLine: average number of lines for all nested
functions or methods

• AvgLineBlank: average number of blank lines for
all nested functions or methods

• AvgLineCode: average number of lines contain-
ing source code for all nested functions or meth-
ods

• AvgLineComment: average number of lines con-
taining comment for all nested functions or meth-
ods

• CountClassBase: number of immediate base
classes

• CountClassCoupled: number of other classes cou-
pled to

• CountClassDerived: number of immediate sub-
classes

• CountDeclClass: number of classes
• CountDeclClassMethod: number of class meth-

ods
• CountDeclClassVariable: number of class vari-

ables
• CountDeclFunction: number of functions
• CountDeclInstanceMethod: number of instance

methods
• CountDeclInstanceVariable: number of instance

variables
• CountDeclInstanceVariablePrivate: number of

private instance variables
• CountDeclInstanceVariableProtected: number of

protected instance variables
• CountDeclInstanceVariablePublic: number of

public instance variables
• CountDeclMethod: number of local methods
• CountDeclMethodAll: number of methods, in-

cluding inherited ones
• CountDeclMethodConst: number of local const

methods
• CountDeclMethodFriend: number of local friend

methods
• CountDeclMethodPrivate: number of local pri-

vate methods
• CountDeclMethodProtected: number of local pro-

tected methods
• CountDeclMethodPublic: number of local public

methods
• CountInput: number of classing subprograms

plus global variables read
• CountLine: number of all lines
• CountLineBlank: number of blank lines
• CountLineCode: number of lines containing

source code
• CountLineCodeDecl: number of lines containing

declarative source code
• CountLineCodeExe: number of lines containing

exectuable source code
• CountLineComment: number of lines containing

comment
• CountLineInactive: number of inactive lines
• CountLinePreprocessor: number of preprocessor

lines
• CountOutput: number of called subprograms

plus global variables
• CountPath: number of possible paths not count-

ing abnormal exits or gotos
• CountSemicolon: number of semicolons
• CountStmt: number of statements
• CountStmtDecl: number of declarative statements
• CountStmtExe: number of executable statements
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TABLE 17
Software products from the RELINK data that are part

of the study, including their total number of classes
and the number of defect-prone classes.

Product #Classes #Defect-prone % Defect-prone
Apache HTTP 194 98 51%
OI Safe 56 22 39%
ZXing 399 118 30%
Total 649 238 37%

• Cyclomatic: cyclomatic complexity
• CyclomaticModified: modified cyclomatic com-

plexity
• CyclomaticStrict: strict cyclomatic complexity
• Essential: essential complexity
• Knots: measure of overlapping jumps
• MaxCyclomatic: maximum cylcomatic complex-

ity of all nested functions or methods
• MaxCyclomaticModified: maximum modified cy-

clomatic complexity of all nested functions or
methods

• MaxCyclomaticStrict: maximum strict cyclomatic
complexity of all nested functions or methods

• MaxEssentialKnots: maximum knots after struc-
tured programming constructs have been re-
moved

• MaxInheritanceTree: maximum depth of class in
inheritance tree

• MaxNesting: maximum level of control con-
structs

• MinEssentialKnots: minimum knots after struc-
tured programming constructs have been re-
moved

• PercentLackOfCohesion: 100% minus the average
cohesion for package entities

• RatioCommentToCode: ratio of comment lines to
code lines

• SumCyclomatic: sum of cyclomatic complexity
for all nested functions and methods

• SumCyclomaticModified: sum of modified cyclo-
matic complexity for all nested functions and
methods

• SumCyclomaticStrict: sum of strict cyclomatic
complexity for all nested functions and methods

• SumEssential: sum of essential complexity of all
nested functions and methods

For a detailed explanation see the Understand website
(https://scitools.com/ (last checked: 2016-07-20)).
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